969 resultados para biodegradable stents


Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Historically, percutaneous coronary intervention (PCI) of bifurcation lesions was associated with worse procedural and clinical outcomes when compared with PCI of non-bifurcation lesions. Newer generation drug-eluting stents (DES) might improve long-term clinical outcomes after bifurcation PCI. METHODS AND RESULTS The LEADERS trial was a 10-center, assessor-blind, non-inferiority, all-comers trial, randomizing 1,707 patients to treatment with a biolimus A9(TM) -eluting stent (BES) with an abluminal biodegradable polymer or a sirolimus-eluting stent (SES) with a durable polymer (ClinicalTrials.gov Identifier: NCT00389220). Five-year clinical outcomes were compared between patients with and without bifurcation lesions and between BES and SES in the bifurcation lesion subgroup. There were 497 (29%) patients with at least 1 bifurcation lesion (BES = 258; SES = 239). At 5-year follow-up, the composite endpoint of cardiac death, myocardial infarction (MI) and clinically-indicated (CI) target vessel revascularization (TVR) was observed more frequently in the bifurcation group (26.6% vs. 22.4%, P = 0.049). Within the bifurcation lesion subgroup, no differences were observed in (cardiac) death or MI rates between BES and SES. However, CI target lesion revascularization (TLR) (10.1% vs. 15.9%, P = 0.0495), and CI TVR (12.0% vs. 19.2%, P = 0.023) rates were significantly lower in the BES group. Definite/probable stent thrombosis (ST) rate was numerically lower in the BES group (3.1% vs. 5.9%, P = 0.15). Very late (>1 year) definite/probable ST rates trended to be lower with BES (0.4% vs. 3.1%, P = 0.057). CONCLUSIONS In the treatment of bifurcation lesions, use of BES led to superior long-term efficacy compared with SES. Safety outcomes were comparable between BES and SES, with an observed trend toward a lower rate of very late definite/probable ST between 1 and 5 years with the BES. © 2015 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND No data are available on the long-term performance of ultrathin strut biodegradable polymer sirolimus-eluting stents (BP-SES). We reported 2-year clinical outcomes of the BIOSCIENCE (Ultrathin Strut Biodegradable Polymer Sirolimus-Eluting Stent Versus Durable Polymer Everolimus-Eluting Stent for Percutaneous Coronary Revascularisation) trial, which compared BP-SES with durable-polymer everolimus-eluting stents (DP-EES) in patients undergoing percutaneous coronary intervention. METHODS AND RESULTS A total of 2119 patients with minimal exclusion criteria were assigned to treatment with BP-SES (n=1063) or DP-EES (n=1056). Follow-up at 2 years was available for 2048 patients (97%). The primary end point was target-lesion failure, a composite of cardiac death, target-vessel myocardial infarction, or clinically indicated target-lesion revascularization. At 2 years, target-lesion failure occurred in 107 patients (10.5%) in the BP-SES arm and 107 patients (10.4%) in the DP-EES arm (risk ratio [RR] 1.00, 95% CI 0.77-1.31, P=0.979). There were no significant differences between BP-SES and DP-EES with respect to cardiac death (RR 1.01, 95% CI 0.62-1.63, P=0.984), target-vessel myocardial infarction (RR 0.91, 95% CI 0.60-1.39, P=0.669), target-lesion revascularization (RR 1.17, 95% CI 0.81-1.71, P=0.403), and definite stent thrombosis (RR 1.38, 95% CI 0.56-3.44, P=0.485). There were 2 cases (0.2%) of definite very late stent thrombosis in the BP-SES arm and 4 cases (0.4%) in the DP-EES arm (P=0.423). In the prespecified subgroup of patients with ST-segment elevation myocardial infarction, BP-SES was associated with a lower risk of target-lesion failure compared with DP-EES (RR 0.48, 95% CI 0.23-0.99, P=0.043, Pinteraction=0.026). CONCLUSIONS Comparable safety and efficacy profiles of BP-SES and DP-EES were maintained throughout 2 years of follow-up. CLINICAL TRIAL REGISTRATION URL: https://www.clinicaltrials.gov. Unique identifier: NCT01443104.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insufficient availability of osteogenic cells limits bone regeneration through cell-based therapies. This study investigated the potential of amniotic fluid–derived stem (AFS) cells to synthesize mineralized extracellular matrix within porous medical-grade poly-e-caprolactone (mPCL) scaffolds. The AFS cells were initially differentiated in two-dimensional (2D) culture to determine appropriate osteogenic culture conditions and verify physiologic mineral production by the AFS cells. The AFS cells were then cultured on 3D mPCL scaffolds (6-mm diameter9-mm height) and analyzed for their ability to differentiate to osteoblastic cells in this environment. The amount and distribution of mineralized matrix production was quantified throughout the mPCL scaffold using nondestructive micro computed tomography (microCT) analysis and confirmed through biochemical assays. Sterile microCT scanning provided longitudinal analysis of long-term cultured mPCL constructs to determine the rate and distribution of mineral matrix within the scaffolds. The AFS cells deposited mineralized matrix throughout the mPCL scaffolds and remained viable after 15 weeks of 3D culture. The effect of predifferentiation of the AFS cells on the subsequent bone formation in vivo was determined in a rat subcutaneous model. Cells that were pre-differentiated for 28 days in vitro produced seven times more mineralized matrix when implanted subcutaneously in vivo. This study demonstrated the potential of AFS cells to produce 3D mineralized bioengineered constructs in vitro and in vivo and suggests that AFS cells may be an effective cell source for functional repair of large bone defects

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, cell sheets comprising multilayered porcine bone marrow stromal cells (BMSC) were assembled with fully interconnected scaffolds made from medical-grade polycaprolactone–calcium phosphate (mPCL–CaP), for the engineering of structural and functional bone grafts. The BMSC sheets were harvested from culture flasks and wrapped around pre-seeded composite scaffolds. The layered cell sheets integrated well with the scaffold/cell construct and remained viable, with mineralized nodules visible both inside and outside the scaffold for up to 8 weeks culture. Cells within the constructs underwent classical in vitro osteogenic differentiation with the associated elevation of alkaline phosphatase activity and bone-related protein expression. In vivo, two sets of cell-sheet-scaffold/cell constructs were transplanted under the skin of nude rats. The first set of constructs (554mm3) were assembled with BMSC sheets and cultured for 8 weeks before implantation. The second set of constructs (10104mm3) was implanted immediately after assembly with BMSC sheets, with no further in vitro culture. For both groups, neo cortical and well-vascularised cancellous bone were formed within the constructs with up to 40% bone volume. Histological and immunohistochemical examination revealed that neo bone tissue formed from the pool of seeded BMSC and the bone formation followed predominantly an endochondral pathway, with woven bone matrix subsequently maturing into fully mineralized compact bone; exhibiting the histological markers of native bone. These findings demonstrate that large bone tissues similar to native bone can be regenerated utilizing BMSC sheet techniques in conjunction with composite scaffolds whose structures are optimized from a mechanical, nutrient transport and vascularization perspective.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Designed three-dimensional biodegradable poly(ethylene glycol)/poly(D,L-lactide) hydrogel structures were prepared for the first time by stereolithography at high resolutions. A photopolymerisable aqueous resin comprising PDLLA-PEG-PDLLA-based macromer, visible light photo-initiator, dye and inhibitor in DMSO/water was used to build the structures. Porous and non-porous hydrogels with well-defined architectures and good mechanical properties were prepared. Porous hydrogel structures with a gyroid pore network architecture showed narrow pore size distributions, excellent pore interconnectivity and good mechanical properties. The structures showed good cell seeding characteristics, and human mesenchymal stem cells adhered and proliferated well on these materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dry Powder Inhaler (DPI) technology has a significant impact in the treatment of various respiratory disorders. DPI formulations consist of a micronized drug (<5ìm) blended with an inert coarse carrier, for which lactose is widely used to date. DPIs are one of the inhalation devices which are used to target the delivery of drugs to the lungs. Drug delivery via DPI formulations is influenced by the physico-chemical characteristics of lactose particles such as size, shape, surface roughness and adhesional forces. Commercially available DPI formulations, which utilise lactose as the carrier, are not efficient in delivering drug to the lungs. The reasons for this are the surface morphology, adhesional properties and surface roughness of lactose. Despite several attempts to modify lactose, the maximum efficient drug delivery to the lungs remains limited; hence, exploring suitable alternative carriers for DPIs is of paramount importance. Therefore, the objective of the project was to study the performance of spherical polymer microparticles as drug carriers and the factors controlling their performance. This study aimed to use biodegradable polymer microspheres as alternative carriers to lactose in DPIs for achieving efficient drug delivery into the lungs. This project focused on fabricating biodegradable polymer microparticles with reproducible surface morphology and particle shape. The surface characteristics of polymeric carriers and the adhesional forces between the drug and carrier particles were investigated in order to gain a better understanding of their influence on drug dispersion. For this purpose, two biodegradable polymers- polycaprolactone (PCL) and poly (DL-lactide-co-glycolide) (PLGA) were used as the carriers to deliver the anti-asthmatic drug - Salbutamol Sulphate (SS). The first study conducted for this dissertation was the aerosolization of SS from mixtures of SS and PCL or PLGA microparticles. The microparticles were fabricated using an emulsion technique and were characterized by laser diffraction for particle size analysis, Scanning Electron Microscopy (SEM) for surface morphology and X-ray Photoelectron Spectroscopy (XPS) to obtain surface elemental composition. The dispersion of the drug from the DPI formulations was determined by using a Twin Stage Impinger (TSI). The Fine particle Fraction (FPF) of SS from powder mixtures was analyzed by High Performance Liquid Chromatography (HPLC). It was found that the drug did not detach from the surface of PCL microspheres. To overcome this, the microspheres were coated with anti-adherent agents such as magnesium stearate and leucine to improve the dispersion of the drug from the carrier surfaces. It was found that coating the PCL microspheres helped in significantly improving the FPF of SS from the PCL surface. These results were in contrast to the PLGA microspheres which readily allowed detachment of the SS from their surface. However, coating PLGA microspheres with antiadherent agents did not further improve the detachment of the drug from the surface. Thus, the first part of the study demonstrated that the surface-coated PCL microspheres and PLGA microspheres can be potential alternatives to lactose as carriers in DPI formulations; however, there was no significant improvement in the FPF of the drug. The second part of the research studied the influence of the size of the microspheres on the FPF of the drug. For this purpose, four different sizes (25 ìm, 48 ìm, 100 ìm and 150 ìm) of the PCL and PLGA microspheres were fabricated and characterized. The dispersion of the drug from microspheres of different sizes was determined. It was found that as the size of the carrier increased there was a significant increase in the FPF of SS. This study suggested that the size of the carrier plays an important role in the dispersion of the drug from the carrier surface. Subsequent experiments in the third part of the dissertation studied the surface properties of the polymeric carrier. The adhesion forces existing between the drug particle and the polymer surfaces, and the surface roughness of the carriers were quantified using Atomic Force Microscopy (AFM). A direct correlation between adhesion forces and dispersion of the drug from the carrier surface was observed suggesting that adhesion forces play an important role in determining the detachment potential of the drug from the carrier surface. However, no direct relationship between the surface roughness of the PCL or PLGA carrier and the FPF of the drug was observed. In conclusion, the body of work presented in this dissertation demonstrated the potential of coated PCL microspheres and PLGA microspheres to be used in DPI formulations as an alternative carrier to sugar based carriers. The study also emphasized the role of the size of the carrier particles and the forces of interaction prevailing between the drug and the carrier particle surface on the aerosolization performances of the drug.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of copolymers of trimethylene carbonate (TMC) and l-lactide (LLA) were synthesized and evaluated as scaffolds for the production of artificial blood vessels. The polymers were end-functionalized with acrylate, cast into films, and cross-linked using UV light. The mechanical, degradation, and biocompatibility properties were evaluated. High TMC polymers showed mechanical properties comparable to human arteries (Young’s moduli of 1.2–1.8 MPa and high elasticity with repeated cycling at 10% strain). Over 84 days degradation in PBS, the modulus and material strength decreased gradually. The polymers were nontoxic and showed good cell adhesion and proliferation over 7 days using human mesenchymal stem cells. When implanted into the rat peritoneal cavity, the polymers elicited formation of tissue capsules composed of myofibroblasts, resembling immature vascular smooth muscle cells. Thus, these polymers showed properties which were tunable and favorable for vascular tissue engineering, specifically, the growth of artificial blood vessels in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is debate as to whether percutaneous coronary intervention (PCI) with drug-eluting stents or coronary artery bypass surgery (CABG) is the best procedure for subjects with type 2 diabetes and coronary artery disease requiring revascularization. There is some evidence that following these procedures there is less further revascularization with CABG than PCI in subjects with diabetes. Two recent studies; the FREEDOM (Future Revascularization Evaluation in patients with Diabetes mellitus: Optimal Management of Multivessel Disease) trial, and a trial using a real world diabetic population from a Registry, have shown that the benefits of CABG over PCI in subjects with type 2 diabetes extends to lower rates of death and myocardial infarct, in addition to lower rates of revascularization. However, the rates of stroke may be higher with CABG than PCI with drug-eluting stents in this population. Thus, if CABG is going to be preferred to PCI in subjects with type 2 diabetes and multivessel coronary disease, consideration should be given to how to reduce the rates of stroke with CABG.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A newly developed middle-frequency (2 MHz) inductively coupled plasma (ICP) source with internal oscillating current is used to treat biodegradable food packaging surfaces. Initially hydrophilic packaging turns to hydrophobic after being processed by ICP plasma. The investigation of optical emission from hydrocarbon radicals in the Ar/ CH4 plasma helps us to understand the property of the hydrophobicity of the surfaces. © 2008 IEEE.