912 resultados para binary codes
Resumo:
The space environment has always been one of the most challenging for communications, both at physical and network layer. Concerning the latter, the most common challenges are the lack of continuous network connectivity, very long delays and relatively frequent losses. Because of these problems, the normal TCP/IP suite protocols are hardly applicable. Moreover, in space scenarios reliability is fundamental. In fact, it is usually not tolerable to lose important information or to receive it with a very large delay because of a challenging transmission channel. In terrestrial protocols, such as TCP, reliability is obtained by means of an ARQ (Automatic Retransmission reQuest) method, which, however, has not good performance when there are long delays on the transmission channel. At physical layer, Forward Error Correction Codes (FECs), based on the insertion of redundant information, are an alternative way to assure reliability. On binary channels, when single bits are flipped because of channel noise, redundancy bits can be exploited to recover the original information. In the presence of binary erasure channels, where bits are not flipped but lost, redundancy can still be used to recover the original information. FECs codes, designed for this purpose, are usually called Erasure Codes (ECs). It is worth noting that ECs, primarily studied for binary channels, can also be used at upper layers, i.e. applied on packets instead of bits, offering a very interesting alternative to the usual ARQ methods, especially in the presence of long delays. A protocol created to add reliability to DTN networks is the Licklider Transmission Protocol (LTP), created to obtain better performance on long delay links. The aim of this thesis is the application of ECs to LTP.
Resumo:
We investigate a recently proposed model for decision learning in a population of spiking neurons where synaptic plasticity is modulated by a population signal in addition to reward feedback. For the basic model, binary population decision making based on spike/no-spike coding, a detailed computational analysis is given about how learning performance depends on population size and task complexity. Next, we extend the basic model to n-ary decision making and show that it can also be used in conjunction with other population codes such as rate or even latency coding.
Resumo:
"Retyped October, 1964"
Resumo:
We investigate the performance of Gallager type error- correcting codes for Binary Symmetric Channels, where the code word comprises products of K bits selected from the original message and decoding is carried out utilizing a connectivity tensor with C connections per index. Shannon's bound for the channel capacity is recovered for large K and zero temperature when the code rate K/C is finite. Close to optimal error-correcting capability, with improved decoding properties is obtained for finite K and C.
Resumo:
A variation of low-density parity check (LDPC) error-correcting codes defined over Galois fields (GF(q)) is investigated using statistical physics. A code of this type is characterised by a sparse random parity check matrix composed of C non-zero elements per column. We examine the dependence of the code performance on the value of q, for finite and infinite C values, both in terms of the thermodynamical transition point and the practical decoding phase characterised by the existence of a unique (ferromagnetic) solution. We find different q-dependence in the cases of C = 2 and C ≥ 3; the analytical solutions are in agreement with simulation results, providing a quantitative measure to the improvement in performance obtained using non-binary alphabets.
Resumo:
We study the performance of Low Density Parity Check (LDPC) error-correcting codes using the methods of statistical physics. LDPC codes are based on the generation of codewords using Boolean sums of the original message bits by employing two randomly-constructed sparse matrices. These codes can be mapped onto Ising spin models and studied using common methods of statistical physics. We examine various regular constructions and obtain insight into their theoretical and practical limitations. We also briefly report on results obtained for irregular code constructions, for codes with non-binary alphabet, and on how a finite system size effects the error probability.
Resumo:
The modem digital communication systems are made transmission reliable by employing error correction technique for the redundancies. Codes in the low-density parity-check work along the principles of Hamming code, and the parity-check matrix is very sparse, and multiple errors can be corrected. The sparseness of the matrix allows for the decoding process to be carried out by probability propagation methods similar to those employed in Turbo codes. The relation between spin systems in statistical physics and digital error correcting codes is based on the existence of a simple isomorphism between the additive Boolean group and the multiplicative binary group. Shannon proved general results on the natural limits of compression and error-correction by setting up the framework known as information theory. Error-correction codes are based on mapping the original space of words onto a higher dimensional space in such a way that the typical distance between encoded words increases.
Resumo:
Typical performance of low-density parity-check (LDPC) codes over a general binary-input output-symmetric memoryless channel is investigated using methods of statistical mechanics. The binary-input additive-white-Gaussian-noise channel and the binary-input Laplace channel are considered as specific channel noise models.
Resumo:
We present a theoretical method for a direct evaluation of the average error exponent in Gallager error-correcting codes using methods of statistical physics. Results for the binary symmetric channel(BSC)are presented for codes of both finite and infinite connectivity.
Resumo:
We obtain phase diagrams of regular and irregular finite-connectivity spin glasses. Contact is first established between properties of the phase diagram and the performance of low-density parity check (LDPC) codes within the replica symmetric (RS) ansatz. We then study the location of the dynamical and critical transition points of these systems within the one step replica symmetry breaking theory (RSB), extending similar calculations that have been performed in the past for the Bethe spin-glass problem. We observe that the location of the dynamical transition line does change within the RSB theory, in comparison with the results obtained in the RS case. For LDPC decoding of messages transmitted over the binary erasure channel we find, at zero temperature and rate R=14, an RS critical transition point at pc 0.67 while the critical RSB transition point is located at pc 0.7450±0.0050, to be compared with the corresponding Shannon bound 1-R. For the binary symmetric channel we show that the low temperature reentrant behavior of the dynamical transition line, observed within the RS ansatz, changes its location when the RSB ansatz is employed; the dynamical transition point occurs at higher values of the channel noise. Possible practical implications to improve the performance of the state-of-the-art error correcting codes are discussed. © 2006 The American Physical Society.
Resumo:
We present a theoretical method for a direct evaluation of the average and reliability error exponents in low-density parity-check error-correcting codes using methods of statistical physics. Results for the binary symmetric channel are presented for codes of both finite and infinite connectivity.
Resumo:
Typical performance of low-density parity-check (LDPC) codes over a general binary-input output-symmetric memoryless channel is investigated using methods of statistical mechanics. Relationship between the free energy in statistical-mechanics approach and the mutual information used in the information-theory literature is established within a general framework; Gallager and MacKay-Neal codes are studied as specific examples of LDPC codes. It is shown that basic properties of these codes known for particular channels, including their potential to saturate Shannon's bound, hold for general symmetric channels. The binary-input additive-white-Gaussian-noise channel and the binary-input Laplace channel are considered as specific channel models.
Resumo:
In 1965 Levenshtein introduced the deletion correcting codes and found an asymptotically optimal family of 1-deletion correcting codes. During the years there has been a little or no research on t-deletion correcting codes for larger values of t. In this paper, we consider the problem of finding the maximal cardinality L2(n;t) of a binary t-deletion correcting code of length n. We construct an infinite family of binary t-deletion correcting codes. By computer search, we construct t-deletion codes for t = 2;3;4;5 with lengths n ≤ 30. Some of these codes improve on earlier results by Hirschberg-Fereira and Swart-Fereira. Finally, we prove a recursive upper bound on L2(n;t) which is asymptotically worse than the best known bounds, but gives better estimates for small values of n.
Resumo:
The relatively high phase noise of coherent optical systems poses unique challenges for forward error correction (FEC). In this letter, we propose a novel semianalytical method for selecting combinations of interleaver lengths and binary Bose-Chaudhuri-Hocquenghem (BCH) codes that meet a target post-FEC bit error rate (BER). Our method requires only short pre-FEC simulations, based on which we design interleavers and codes analytically. It is applicable to pre-FEC BER ∼10-3, and any post-FEC BER. In addition, we show that there is a tradeoff between code overhead and interleaver delay. Finally, for a target of 10-5, numerical simulations show that interleaver-code combinations selected using our method have post-FEC BER around 2× target. The target BER is achieved with 0.1 dB extra signal-to-noise ratio.
Resumo:
Similar to classic Signal Detection Theory (SDT), recent optimal Binary Signal Detection Theory (BSDT) and based on it Neural Network Assembly Memory Model (NNAMM) can successfully reproduce Receiver Operating Characteristic (ROC) curves although BSDT/NNAMM parameters (intensity of cue and neuron threshold) and classic SDT parameters (perception distance and response bias) are essentially different. In present work BSDT/NNAMM optimal likelihood and posterior probabilities are analytically analyzed and used to generate ROCs and modified (posterior) mROCs, optimal overall likelihood and posterior. It is shown that for the description of basic discrimination experiments in psychophysics within the BSDT a ‘neural space’ can be introduced where sensory stimuli as neural codes are represented and decision processes are defined, the BSDT’s isobias curves can simultaneously be interpreted as universal psychometric functions satisfying the Neyman-Pearson objective, the just noticeable difference (jnd) can be defined and interpreted as an atom of experience, and near-neutral values of biases are observers’ natural choice. The uniformity or no-priming hypotheses, concerning the ‘in-mind’ distribution of false-alarm probabilities during ROC or overall probability estimations, is introduced. The BSDT’s and classic SDT’s sensitivity, bias, their ROC and decision spaces are compared.