865 resultados para Weighted Banach Spaces


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spin factors and generalizations are used to revisit positive generation of B(E, F), where E and F are ordered Banach spaces. Interior points of B(E, F)+ are discussed and in many cases it is seen that positive generation of B(E, F) is controlled by spin structure in F when F is a JBW-algebra.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the problem of scattering of time harmonic acoustic waves by an unbounded sound soft surface which is assumed to lie within a finite distance of some plane. The paper is concerned with the study of an equivalent variational formulation of this problem set in a scale of weighted Sobolev spaces. We prove well-posedness of this variational formulation in an energy space with weights which extends previous results in the unweighted setting [S. Chandler-Wilde and P. Monk, SIAM J. Math. Anal., 37 (2005), pp. 598–618] to more general inhomogeneous terms in the Helmholtz equation. In particular, in the two-dimensional case, our approach covers the problem of plane wave incidence, whereas in the three-dimensional case, incident spherical and cylindrical waves can be treated. As a further application of our results, we analyze a finite section type approximation, whereby the variational problem posed on an infinite layer is approximated by a variational problem on a bounded region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We characterize the essential spectra of Toeplitz operators Ta on weighted Bergman spaces with matrix-valued symbols; in particular we deal with two classes of symbols, the Douglas algebra C+H∞ and the Zhu class Q := L∞ ∩VMO∂ . In addition, for symbols in C+H∞ , we derive a formula for the index of Ta in terms of its symbol a in the scalar-valued case, while in the matrix-valued case we indicate that the standard reduction to the scalar-valued case fails to work analogously to the Hardy space case. Mathematics subject classification (2010): 47B35,

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We provide bounds on the upper box-counting dimension of negatively invariant subsets of Banach spaces, a problem that is easily reduced to covering the image of the unit ball under a linear map by a collection of balls of smaller radius. As an application of the abstract theory we show that the global attractors of a very broad class of parabolic partial differential equations (semilinear equations in Banach spaces) are finite-dimensional. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

l Suppose that X, Y. A and B are Banach spaces such that X is isomorphic to Y E) A and Y is isomorphic to X circle plus B. Are X and Y necessarily isomorphic? In this generality. the answer is no, as proved by W.T. Cowers in 1996. In the present paper, we provide a very simple necessary and sufficient condition on the 10-tuples (k, l, m, n. p, q, r, s, u, v) in N with p+q+u >= 3, r+s+v >= 3, uv >= 1, (p,q)$(0,0), (r,s)not equal(0,0) and u=1 or v=1 or (p. q) = (1, 0) or (r, s) = (0, 1), which guarantees that X is isomorphic to Y whenever these Banach spaces satisfy X(u) similar to X(p)circle plus Y(q), Y(u) similar to X(r)circle plus Y(s), and A(k) circle plus B(l) similar to A(m) circle plus B(n). Namely, delta = +/- 1 or lozenge not equal 0, gcd(lozenge, delta (p + q - u)) divides p + q - u and gcd(lozenge, delta(r + s - v)) divides r + s - v, where 3 = k - I - in + n is the characteristic number of the 4-tuple (k, l, m, n) and lozenge = (p - u)(s - v) - rq is the discriminant of the 6-tuple (p, q, r, s, U, v). We conjecture that this result is in some sense a maximal extension of the classical Pelczynski`s decomposition method in Banach spaces: the case (1, 0. 1, 0, 2. 0, 0, 2. 1. 1). (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We prove three new dichotomies for Banach spaces a la W.T. Gowers` dichotomies. The three dichotomies characterise respectively the spaces having no minimal subspaces, having no subsequentially minimal basic sequences, and having no subspaces crudely finitely representable in all of their subspaces. We subsequently use these results to make progress on Gowers` program of classifying Banach spaces by finding characteristic spaces present in every space. Also, the results are used to embed any partial order of size K I into the subspaces of any space without a minimal subspace ordered by isomorphic embeddability. (c) 2009 Elsevier Inc. All fights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Suppose that X and Y are Banach spaces isomorphic to complemented subspaces of each other. In 1996, W. T. Gowers solved the Schroeder- Bernstein Problem for Banach spaces by showing that X is not necessarily isomorphic to Y. However, if X-2 is complemented in X with supplement A and Y-2 is complemented in Y with supplement B, that is, { X similar to X-2 circle plus A Y similar to Y-2 circle plus B, then the classical Pelczynski`s decomposition method for Banach spaces shows that X is isomorphic to Y whenever we can assume that A = B = {0}. But unfortunately, this is not always possible. In this paper, we show that it is possible to find all finite relations of isomorphism between A and B which guarantee that X is isomorphic to Y. In order to do this, we say that a quadruple (p, q, r, s) in N is a P-Quadruple for Banach spaces if X is isomorphic to Y whenever the supplements A and B satisfy A(p) circle plus B-q similar to A(r) circle plus B-s . Then we prove that (p, q, r, s) is a P-Quadruple for Banach spaces if and only if p - r = s - q = +/- 1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Motivated by a characterization of the complemented subspaces in Banach spaces X isomorphic to their squares X-2, we introduce the concept of P-complemented subspaces in Banach spaces. In this way, the well-known Pelczynski`s decomposition method can be seen as a Schroeder-Bernstein type theorem. Then, we give a complete description of the Schroeder-Bernstein type theorems for this new notion of complementability. By contrast, some very elementary questions on P-complementability are refinements of the Square-Cube Problem closely connected with some Banach spaces introduced by W.T. Gowers and B. Maurey in 1997. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We first introduce the notion of (p, q, r)-complemented subspaces in Banach spaces, where p, q, r is an element of N. Then, given a couple of triples {(p, q, r), (s, t, u)} in N and putting Lambda = (q + r - p)(t + u - s) - ru, we prove partially the following conjecture: For every pair of Banach spaces X and Y such that X is (p, q, r)-complemented in Y and Y is (s, t, u)-complemented in X, we have that X is isomorphic Y if and only if one of the following conditions holds: (a) Lambda not equal 0, Lambda divides p - q and s - t, p = 1 or q = 1 or s = 1 or t = 1. (b) p = q = s = t = 1 and gcd(r, u) = 1. The case {(2, 1, 1), (2, 1,1)} is the well-known Pelczynski`s decomposition method. Our result leads naturally to some generalizations of the Schroeder-B em stein problem for Banach spaces solved by W.T. Gowers in 1996. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Let X and Y be Banach spaces isomorphic to complemented subspaces of each other with supplements A and B. In 1996, W. T. Gowers solved the Schroeder-Bernstein (or Cantor-Bernstein) problem for Banach spaces by showing that X is not necessarily isomorphic to Y. In this paper, we obtain a necessary and sufficient condition on the sextuples (p, q, r, s, u, v) in N with p + q >= 1, r + s >= 1 and u, v is an element of N*, to provide that X is isomorphic to Y, whenever these spaces satisfy the following decomposition scheme A(u) similar to X(P) circle plus Y(q) B(v) similar to X(r) circle plus Y(s). Namely, Phi = (p - u)(s - v) - (q + u)(r + v) is different from zero and Phi divides p + q and r + s. These sextuples are called Cantor-Bernstein sextuples for Banach spaces. The simplest case (1, 0, 0, 1, 1, 1) indicates the well-known Pelczynski`s decomposition method in Banach space. On the other hand, by interchanging some Banach spaces in the above decomposition scheme, refinements of the Schroeder-Bernstein problem become evident.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The play operator has a fundamental importance in the theory of hysteresis. It was studied in various settings as shown by P. Krejci and Ph. Laurencot in 2002. In that work it was considered the Young integral in the frame of Hilbert spaces. Here we study the play in the frame of the regulated functions (that is: the ones having only discontinuities of the first kind) on a general time scale T (that is: with T being a nonempty closed set of real numbers) with values in a Banach space. We will be showing that the dual space in this case will be defined as the space of operators of bounded semivariation if we consider as the bilinearity pairing the Cauchy-Stieltjes integral on time scales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we consider a vector optimization problem where all functions involved are defined on Banach spaces. We obtain necessary and sufficient criteria for optimality in the form of Karush-Kuhn-Tucker conditions. We also introduce a nonsmooth dual problem and provide duality theorems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the question whether there exists a Banach space X of density continuum such that every Banach space of density at most continuum isomorphically embeds into X (called a universal Banach space of density c). It is well known that a""(a)/c (0) is such a space if we assume the continuum hypothesis. Some additional set-theoretic assumption is indeed needed, as we prove in the main result of this paper that it is consistent with the usual axioms of set-theory that there is no universal Banach space of density c. Thus, the problem of the existence of a universal Banach space of density c is undecidable using the usual axioms of set-theory. We also prove that it is consistent that there are universal Banach spaces of density c, but a""(a)/c (0) is not among them. This relies on the proof of the consistency of the nonexistence of an isomorphic embedding of C([0, c]) into a""(a)/c (0).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyse several examples of separable Banach spaces, some of them new, and relate them to several dichotomies obtained in [11], by classifying them according to which side of the dichotomies they fall.