973 resultados para Vector spaces -- Problems, exercises, etc.
Resumo:
Según Polya (1962), la principal finalidad de las matemáticas del currículum de secundaria es enseñar a los alumnos a PENSAR. Este "pensar" lo identificamos, al menos en una primera aproximación, con "la resolución de problemas”, considerada de suma importancia en el currículum de matemáticas de nuestro país (Departament d’Educació, 2008). Además de una herramienta para aprender a “pensar matemáticamente”, la resolución de problemas la consideramos, en sí misma, como un método de enseñanza: es la interacción con situaciones problemáticas la que hace que los alumnos construyan activamente su conocimiento (Vila y Callejo, 2004; Onrubia y otros, 2001)
Resumo:
Els problemes són un mitjà per posar l’èmfasi en els alumnes, en els seus processos de pensament i en els mètodes inquisitius; una eina per formar subjectes amb capacitat autònoma de resoldre problemes, crítics i reflexius, capaços de preguntar-se pels fets. Es convenient seleccionar problemes que siguin accessibles als alumnes però que al mateix temps els suposi un repte, encoratjant l’exposició d’idees, l’argumentació i l’esperit crític. Han de fomentar el treball en grup entre els estudiants, la comunicació d’idees, el contrast i el diàleg. Han d’interessar als estudiants en processos generadors de coneixement com definir, fer-se preguntes i preguntar, observar, classificar, particularitzar, generalitzar, conjecturar, demostrar i aplicar
Resumo:
L' Estadística en el vostre món consta de 27 unitats didàctiques dirigides als alumnes i estructurades en quatre nivells de dificultat, de l'1 al 4. Cada unitat consta del material per l'alumne i del material pel docent. Aquest correspon al material per l'alumne de la unitat didàctica amb nivell de dificultat 1
Resumo:
L' Estadística en el vostre món consta de 27 unitats didàctiques dirigides als alumnes i estructurades en quatre nivells de dificultat, de l'1 al 4. Cada unitat consta del material per l'alumne i del material pel docent. Aquest correspon al material per l'alumne de la unitat didàctica amb nivell de dificultat 2
Resumo:
L' Estadística en el vostre món consta de 27 unitats didàctiques dirigides als alumnes i estructurades en quatre nivells de dificultat, de l'1 al 4. Cada unitat consta del material per l'alumne i del material pel docent. Aquest correspon al material per l'alumne de la unitat didàctica amb nivell de dificultat 3
Resumo:
L' Estadística en el vostre món consta de 27 unitats didàctiques dirigides als alumnes i estructurades en quatre nivells de dificultat, de l'1 al 4. Cada unitat consta del material per l'alumne i del material pel docent. Aquest correspon al material per l'alumne de la unitat didàctica amb nivell de dificultat 4
Resumo:
Shows stages and operations undertaken in revising the New Jersey state base map.
Resumo:
Linear Algebra—Selected Problems is a unique book for senior undergraduate and graduate students to fast review basic materials in Linear Algebra. Vector spaces are presented first, and linear transformations are reviewed secondly. Matrices and Linear systems are presented. Determinants and Basic geometry are presented in the last two chapters. The solutions for proposed excises are listed for readers to references.
Resumo:
This thesis is a study of abstract fuzzy convexity spaces and fuzzy topology fuzzy convexity spaces No attempt seems to have been made to develop a fuzzy convexity theoryin abstract situations. The purpose of this thesis is to introduce fuzzy convexity theory in abstract situations
Resumo:
Inverse problems for dynamical system models of cognitive processes comprise the determination of synaptic weight matrices or kernel functions for neural networks or neural/dynamic field models, respectively. We introduce dynamic cognitive modeling as a three tier top-down approach where cognitive processes are first described as algorithms that operate on complex symbolic data structures. Second, symbolic expressions and operations are represented by states and transformations in abstract vector spaces. Third, prescribed trajectories through representation space are implemented in neurodynamical systems. We discuss the Amari equation for a neural/dynamic field theory as a special case and show that the kernel construction problem is particularly ill-posed. We suggest a Tikhonov-Hebbian learning method as regularization technique and demonstrate its validity and robustness for basic examples of cognitive computations.
Resumo:
∗ The final version of this paper was sent to the editor when the author was supported by an ARC Small Grant of Dr. E. Tarafdar.
Resumo:
In this paper we consider a primal-dual infinite linear programming problem-pair, i.e. LPs on infinite dimensional spaces with infinitely many constraints. We present two duality theorems for the problem-pair: a weak and a strong duality theorem. We do not assume any topology on the vector spaces, therefore our results are algebraic duality theorems. As an application, we consider transferable utility cooperative games with arbitrarily many players.
Resumo:
Some results are obtained for non-compact cases in topological vector spaces for the existence problem of solutions for some set-valued variational inequalities with quasi-monotone and lower hemi-continuous operators, and with quasi-semi-monotone and upper hemi-continuous operators. Some applications are given in non-reflexive Banach spaces for these existence problems of solutions and for perturbation problems for these set-valued variational inequalities with quasi-monotone and quasi-semi-monotone operators.
Resumo:
Linear spaces consisting of σ-finite probability measures and infinite measures (improper priors and likelihood functions) are defined. The commutative group operation, called perturbation, is the updating given by Bayes theorem; the inverse operation is the Radon-Nikodym derivative. Bayes spaces of measures are sets of classes of proportional measures. In this framework, basic notions of mathematical statistics get a simple algebraic interpretation. For example, exponential families appear as affine subspaces with their sufficient statistics as a basis. Bayesian statistics, in particular some well-known properties of conjugated priors and likelihood functions, are revisited and slightly extended
Resumo:
Exercises and solutions in LaTex