Bayes linear spaces


Autoria(s): Van den Boogaart, Karl Gerald; Egozcue, Juan José; Pawlowsky-Glahn, Vera
Data(s)

25/03/2014

Resumo

Linear spaces consisting of σ-finite probability measures and infinite measures (improper priors and likelihood functions) are defined. The commutative group operation, called perturbation, is the updating given by Bayes theorem; the inverse operation is the Radon-Nikodym derivative. Bayes spaces of measures are sets of classes of proportional measures. In this framework, basic notions of mathematical statistics get a simple algebraic interpretation. For example, exponential families appear as affine subspaces with their sufficient statistics as a basis. Bayesian statistics, in particular some well-known properties of conjugated priors and likelihood functions, are revisited and slightly extended

Identificador

http://hdl.handle.net/10256/8996

Idioma(s)

eng

Publicador

Institut d´Estadística de Catalunya (Idescat)

Direitos

Attribution-NonCommercial-NoDerivs 3.0 Spain

<a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a>

Palavras-Chave #Espais vectorials #Vector spaces #Estadística bayesiana #Bayesian statistical decision theory #Banach, Espais de -- Propietat de Radon-Nikodym #Banach spaces -- Radon-Nikodym property #Anàlisi multivariable #Multivariate analysis
Tipo

info:eu-repo/semantics/article

info:eu-repo/semantics/publishedVersion