874 resultados para User Interfaces and Human Computer Interaction
Resumo:
Surgical interventions are usually performed in an operation room; however, access to the information by the medical team members during the intervention is limited. While in conversations with the medical staff, we observed that they attach significant importance to the improvement of the information and communication direct access by queries during the process in real time. It is due to the fact that the procedure is rather slow and there is lack of interaction with the systems in the operation room. These systems can be integrated on the Cloud adding new functionalities to the existing systems the medical expedients are processed. Therefore, such a communication system needs to be built upon the information and interaction access specifically designed and developed to aid the medical specialists. Copyright 2014 ACM.
Resumo:
Hand gestures are a powerful way for human communication, with lots of potential applications in the area of human computer interaction. Vision-based hand gesture recognition techniques have many proven advantages compared with traditional devices, giving users a simpler and more natural way to communicate with electronic devices. This work proposes a generic system architecture based in computer vision and machine learning, able to be used with any interface for human-computer interaction. The proposed solution is mainly composed of three modules: a pre-processing and hand segmentation module, a static gesture interface module and a dynamic gesture interface module. The experiments showed that the core of visionbased interaction systems could be the same for all applications and thus facilitate the implementation. For hand posture recognition, a SVM (Support Vector Machine) model was trained and used, able to achieve a final accuracy of 99.4%. For dynamic gestures, an HMM (Hidden Markov Model) model was trained for each gesture that the system could recognize with a final average accuracy of 93.7%. The proposed solution as the advantage of being generic enough with the trained models able to work in real-time, allowing its application in a wide range of human-machine applications. To validate the proposed framework two applications were implemented. The first one is a real-time system able to interpret the Portuguese Sign Language. The second one is an online system able to help a robotic soccer game referee judge a game in real time.
Resumo:
Hand gestures are a powerful way for human communication, with lots of potential applications in the area of human computer interaction. Vision-based hand gesture recognition techniques have many proven advantages compared with traditional devices, giving users a simpler and more natural way to communicate with electronic devices. This work proposes a generic system architecture based in computer vision and machine learning, able to be used with any interface for humancomputer interaction. The proposed solution is mainly composed of three modules: a pre-processing and hand segmentation module, a static gesture interface module and a dynamic gesture interface module. The experiments showed that the core of vision-based interaction systems can be the same for all applications and thus facilitate the implementation. In order to test the proposed solutions, three prototypes were implemented. For hand posture recognition, a SVM model was trained and used, able to achieve a final accuracy of 99.4%. For dynamic gestures, an HMM model was trained for each gesture that the system could recognize with a final average accuracy of 93.7%. The proposed solution as the advantage of being generic enough with the trained models able to work in real-time, allowing its application in a wide range of human-machine applications.
Resumo:
[EN]Perceptual User Interfaces (PUIs) aim at facilitating human-computer interaction with the aid of human-like capacities (computer vision, speech recognition, etc.). In PUIs, the human face is a central element, since it conveys not only identity but also other important information, particularly with respect to the user’s mood or emotional state. This paper describes both a face detector and a smile detector for PUIs. Both are suitable for real-time interaction.
Resumo:
Facilitating general access to data from sensor networks (including traffic, hydrology and other domains) increases their utility. In this paper we argue that the journalistic metaphor can be effectively used to automatically generate multimedia presentations that help non-expert users analyze and understand sensor data. The journalistic layout and style are familiar to most users. Furthermore, the journalistic approach of ordering information from most general to most specific helps users obtain a high-level understanding while providing them the freedom to choose the depth of analysis to which they want to go. We describe the general characteristics and architectural requirements for an interactive intelligent user interface for exploring sensor data that uses the journalistic metaphor. We also describe our experience in developing this interface in real-world domains (e.g., hydrology).
Resumo:
Para obtenção do grau de Doutor pela Universidade de Vigo com menção internacional Departamento de Informática
Resumo:
This paper presents a usability evaluation of the MTE (Ministry of Labor e Employment) website in order to measure the effectiveness, efficiency and user satisfaction regarding the website. The participants were 12 users (07 users were female and 05 male). The results indicate that although the education level of all participants and computing experience, many of them have had difficulty in finding information and do not recommend the site. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
The article proposes granular computing as a theoretical, formal and methodological basis for the newly emerging research field of human–data interaction (HDI). We argue that the ability to represent and reason with information granules is a prerequisite for data legibility. As such, it allows for extending the research agenda of HDI to encompass the topic of collective intelligence amplification, which is seen as an opportunity of today’s increasingly pervasive computing environments. As an example of collective intelligence amplification in HDI, we introduce a collaborative urban planning use case in a cognitive city environment and show how an iterative process of user input and human-oriented automated data processing can support collective decision making. As a basis for automated human-oriented data processing, we use the spatial granular calculus of granular geometry.
Resumo:
Studies on learning management systems have largely been technical in nature with an emphasis on the evaluation of the human computer interaction (HCI) processes in using the LMS. This paper reports a study that evaluates the information interaction processes on an eLearning course used in teaching an applied Statistics course. The eLearning course is used as a synonym for information systems. The study explores issues of missing context in stored information in information systems. Using the semiotic framework as a guide, the researchers evaluated an existing eLearning course with the view to proposing a model for designing improved eLearning courses for future eLearning programmes. In this exploratory study, a survey questionnaire is used to collect data from 160 participants on an eLearning course in Statistics in Applied Climatology. The views of the participants are analysed with a focus on only the human information interaction issues. Using the semiotic framework as a guide, syntactic, semantic, pragmatic and social context gaps or problems were identified. The information interactions problems identified include ambiguous instructions, inadequate information, lack of sound, interface design problems among others. These problems affected the quality of new knowledge created by the participants. The researchers thus highlighted the challenges of missing information context when data is stored in an information system. The study concludes by proposing a human information interaction model for improving the information interaction quality issues in the design of eLearning course on learning management platforms and those other information systems.
Resumo:
This paper describes a novel architecture to introduce automatic annotation and processing of semantic sensor data within context-aware applications. Based on the well-known state-charts technologies, and represented using W3C SCXML language combined with Semantic Web technologies, our architecture is able to provide enriched higher-level semantic representations of user’s context. This capability to detect and model relevant user situations allows a seamless modeling of the actual interaction situation, which can be integrated during the design of multimodal user interfaces (also based on SCXML) for them to be adequately adapted. Therefore, the final result of this contribution can be described as a flexible context-aware SCXML-based architecture, suitable for both designing a wide range of multimodal context-aware user interfaces, and implementing the automatic enrichment of sensor data, making it available to the entire Semantic Sensor Web
Resumo:
En esta tesis se ha profundizado en el estudio y desarrollo de modelos de soporte para el aprendizaje colaborativo a distancia, que ha permitido proponer una arquitectura fundamentada en los principios del paradigma CSCL (Computer Supported Collaborative Learning). La arquitectura propuesta aborda un tipo de problema concreto que requiere el uso de técnicas derivadas del Trabajo Colaborativo, la Inteligencia Artificial, Interfaces de Usuario así como ideas tomadas de la Pedagogía y la Psicología. Se ha diseñado una solución completa, abierta y genérica. La arquitectura aprovecha las nuevas tecnologías para lograr un sistema efectivo de apoyo a la educación a distancia. Está organizada en cuatro niveles: el de Configuración, el de Experiencia, el de Organización y el de Análisis. A partir de ella se ha implementado un sistema llamado DEGREE. En DEGREE, cada uno de los niveles de la arquitectura da lugar a un subsistema independiente pero relacionado con los otros. La aplicación saca partido del uso de espacios de trabajo estructurados. El subsistema Configurador de Experiencias permite definir los elementos de un espacio de trabajo y una experiencia y adaptarlos a cada tipo de usuario. El subsistema Manejador de Experiencias recoge las contribuciones de los usuarios para construir una solución conjunta de un problema. Las intervenciones de los alumnos se estructuran basándose en un grafo conversacional genérico. Además, se registran todas las acciones de los usuarios para representar explícitamente el proceso completo que lleva a la solución. Estos datos también se almacenan en una memoria común que constituye el subsistema llamado Memoria Organizativa de Experiencias. El subsistema Analizador estudia las intervenciones de los usuarios. Este análisis permite inferir conclusiones sobre la forma en que trabajan los grupos y sus actitudes frente a la colaboración, teniendo en cuenta además el conocimiento subjetivo del observador. El proceso de desarrollo en paralelo de la arquitectura y el sistema ha seguido un ciclo de refinamiento en cinco fases con sucesivas etapas de prototipado y evaluación formativa. Cada fase de este proceso se ha realizado con usuarios reales y se han considerado las opiniones de los usuarios para mejorar las funcionalidades de la arquitectura así como la interfaz del sistema. Esta aproximación ha permitido, además, comprobar la utilidad práctica y la validez de las propuestas que sustentan este trabajo.---ABSTRACT---In this thesis, we have studied in depth the development of support models for distance collaborative learning and subsequently devised an architecture based on the Computer Supported Collaborative Learning paradigm principles. The proposed architecture addresses a specific problem: coordinating groups of students to perform collaborative distance learning activities. Our approach uses Cooperative Work, Artificial Intelligence and Human-Computer Interaction techniques as well as some ideas from the fields of Pedagogy and Psychology. We have designed a complete, open and generic solution. Our architecture exploits the new information technologies to achieve an effective system for education purposes. It is organised into four levels: Configuration, Experience, Organisation and Reflection. This model has been implemented into a system called DEGREE. In DEGREE, each level of the architecture gives rise to an independent subsystem related to the other ones. The application benefits from the use of shared structured workspaces. The configuration subsystem allows customising the elements that define an experience and a workspace. The experience subsystem gathers the users' contributions to build joint solutions to a given problem. The students' interventions build up a structure based on a generic conversation graph. Moreover, all user actions are registered in order to represent explicitly the complete process for reaching the group solution. Those data are also stored into a common memory, which constitutes the organisation subsystem. The user interventions are studied by the reflection subsystem. This analysis allows us inferring conclusions about the way in which the group works and its attitudes towards collaboration. The inference process takes into account the observer's subjective knowledge. The process of developing both the architecture and the system in parallel has run through a five-pass cycle involving successive stages of prototyping and formative evaluation. At each stage of that process, we have considered the users' feedback for improving the architecture's functionalities as well as the system interface. This approach has allowed us to prove the usability and validity of our proposal.
Resumo:
This study examined the interaction of age, attitude, and performance within the context of an interactive computer testing experience. Subjects were 13 males and 47 females between the ages of 55 and 82, with a minimum of a high school education. Initial attitudes toward computers, as measured by the Cybernetics Attitude Scale (CAS), demonstrated overall equivalence between these older subjects and previously tested younger subjects. Post-intervention scores on the CAS indicated that attitudes toward computers were unaffected by either a "fun" or a "challenging" computer interaction experience. The differential effects of a computerized vs. a paperand- pencil presentation format of a 20-item, multiple choice vocabulary test were examined. Results indicated no significant differences in the performance of subjects in the two conditions, and no interaction effect between attitude and performance. These findings suggest that the attitudes of older adults towards computers do not affect their computerized testing performance, at least for short term testing of verbal abilities. A further implication is that, under the conditions presented here, older subjects appear to be unaffected by mode of testing. The impact of recent advanced in technology on older adults is discussed.
Resumo:
Automation technologies are widely acclaimed to have the potential to significantly reduce energy consumption and energy-related costs in buildings. However, despite the abundance of commercially available technologies, automation in domestic environments keep on meeting commercial failures. The main reason for this is the development process that is used to build the automation applications, which tend to focus more on technical aspects rather than on the needs and limitations of the users. An instance of this problem is the complex and poorly designed home automation front-ends that deter customers from investing in a home automation product. On the other hand, developing a usable and interactive interface is a complicated task for developers due to the multidisciplinary challenges that need to be identified and solved. In this context, the current research work investigates the different design problems associated with developing a home automation interface as well as the existing design solutions that are applied to these problems. The Qualitative Data Analysis approach was used for collecting data from research papers and the open coding process was used to cluster the findings. From the analysis of the data collected, requirements for designing the interface were derived. A home energy management functionality for a Web-based home automation front-end was developed as a proof-of-concept and a user evaluation was used to assess the usability of the interface. The results of the evaluation showed that this holistic approach to designing interfaces improved its usability which increases the chances of its commercial success.
Resumo:
This paper presents a framework to build medical training applications by using virtual reality and a tool that helps the class instantiation of this framework. The main purpose is to make easier the building of virtual reality applications in the medical training area, considering systems to simulate biopsy exams and make available deformation, collision detection, and stereoscopy functionalities. The instantiation of the classes allows quick implementation of the tools for such a purpose, thus reducing errors and offering low cost due to the use of open source tools. Using the instantiation tool, the process of building applications is fast and easy. Therefore, computer programmers can obtain an initial application and adapt it to their needs. This tool allows the user to include, delete, and edit parameters in the functionalities chosen as well as storing these parameters for future use. In order to verify the efficiency of the framework, some case studies are presented.
Resumo:
Dissertação para obtenção do Grau de Doutor em Informática