949 resultados para Triphenyl-tetrazoliu m chloride
Resumo:
M r=275.8, monoclinic, P21/a, a= 12.356 (5), b=9.054 (4), c= 14.043 (4) A, t= 100.34 (3) ° , V=1545.5A 3, Z=4, D,,,= 1.14, D x = 1.185 Mg m -3, p(Mo Ka, /l = 0.7107 ]k) = 2.77 mm -1, F(000) = 584.0, T= 293 K, R = 0.053 for 1088 reflections. The four-membered ring is buckled 13.0 ° (0= 167.0°). The azetidinium moiety is linked to the C1- ion through a hydrogen bond [O-H...C1 = 3.166 (5) A].
Resumo:
A kinetic model has been developed for the bulk polymerization of vinyl chloride using Talamini's hypothesis of two-phase polymerization and a new concept of kinetic solubility which assumes that rapidly growing polymer chains have considerably greater solubility than the thermodynamic solubility of preformed polymer molecules of the same size and so can remain in solution even under thermodynamically unfavourable conditions. It is further assumed that this kinetic solubility is a function of chain length. The model yields a rate expression consistent with the experimental data for vinyl chloride bulk polymerization and moreover is able to explain several characteristic kinetic features of this system. Application of the model rate expression to the available rate data has yielded 2.36 × 108l mol−1 sec−1 for the termination rate constant in the polymer-rich phase; as expected, this value is smaller than that reported for homogenous polymerization by a factor of 10–30.
Resumo:
The reactions of sulphuryl fluoride, sulphuryl chlorofluoride and sulphuryl chloride with the amines tert-butylamine, benzylamine, piperidine, pyridine and quinoline have been investigated. The primary and secondary amines react with the elimination of hydrogen halides and formation of S---N bonds whereas tertiary amines form 1:2 adducts.
Resumo:
Aqueous solutions of sodium chloride were solidified under the influence of magnetic and electrical fields using two different freezing systems. In the droplet system, small droplets of the solution are introduced in an organic liquid column at −20°C which acts as the heat sink. In the unidirectional freezing system the solutions are poured into a tygon tube mounted on a copper chill, maintained at −70°C, from which the freezing initiates. Application of magnetic fields caused an increase in the spacing and promoted side branching of primary ice dendrites in the droplet freezing system, but had no measurable effect on the dendrites formed in the unidirectional freezing system. The range of electric fields applied in this investigation had no measurable effect on the dendritic structure. Possible interactions between external magnetic and electrical fields have been reviewed and it is suggested that the selective effect of magnetic fields on dendrite spacings in a droplet system could be due to a change in the nucleation behaviour of the solution in the presence of a magnetic field.
Resumo:
Abstract is not available.
Resumo:
The stress-optical coefficients C = (n3/2) (q11−q12) and C′ = (n3/2)q44 of RbCl and RbBr crystals have been measured at room temperature (26°C) over the wave length range 5750-2500 A.
Resumo:
Water stress resulted in a specific response leading to a large and significant increase (80-fold) in free proline content of ragi (Eleusine coracana) leaves and seedlings. L-Proline protected ornithine aminotransferase, an enzyme in the pathway for proline biosynthesis, isolated from normal and stressed ragi leaves against heat inactivation and denaturation by urea and guanidinium chloride. The protection of the stressed enzyme by L-proline was much more complete than that of the enzyme isolated from normal leaves. While L-ornithine, one of the substrates, protected the stressed enzyme against inactivation, it enhanced the rate of inactivation of the normal enzyme. α-Ketoglutarate protected both the normal and stressed enzyme against inactivation and denaturation. These results support the suggestion that ornithine aminotransferase has undergone a structural alteration during water stress. In view of the causal relationship between elevated temperature and water stress of plants under natural conditions, the protection afforded by proline against inactivation and denaturation of the enzyme from stressed leaves assumes significance. These results provide an explanation for a possible functional importance of proline accumulation during water stress.
Resumo:
Abstract is not available.
Resumo:
Background Around the world, guidelines and clinical practice for the prevention of complications associated with central venous catheters (CVC) vary greatly. To prevent occlusion, most institutions recommend the use of heparin when the CVC is not in use. However, there is debate regarding the need for heparin and evidence to suggest normal saline may be as effective. The use of heparin is not without risk, may be unnecessary and is also associated with increased costs. Objectives To assess the clinical effects (benefits and harms) of heparin versus normal saline to prevent occlusion in long-term central venous catheters in infants, children and adolescents. Design A Cochrane systematic review of randomised controlled trials was undertaken. - Data sources: The Cochrane Vascular Group Specialised Register (including MEDLINE, CINAHL, EMBASE and AMED) and the Cochrane Register of Studies were searched. Hand searching of relevant journals and reference lists of retrieved articles was also undertaken. - Review Methods: Data were extracted and appraisal undertaken. We included studies that compared the efficacy of normal saline with heparin to prevent occlusion. We excluded temporary CVCs and peripherally inserted central catheters. Rate ratios per 1000 catheter days were calculated for two outcomes, occlusion of the CVC, and CVC-associated blood stream infection. Results Three trials with a total of 245 participants were included in this review. The three trials directly compared the use of normal saline and heparin. However, between studies, all used different protocols with various concentrations of heparin and frequency of flushes. The quality of the evidence ranged from low to very low. The estimated rate ratio for CVC occlusion per 1000 catheter days between the normal saline and heparin group was 0.75 (95% CI 0.10 to 5.51, two studies, 229 participants, very low quality evidence). The estimated rate ratio for CVC-associated blood stream infection was 1.48 (95% CI 0.24 to 9.37, two studies, 231 participants; low quality evidence). Conclusions It remains unclear whether heparin is necessary for CVC maintenance. More well-designed studies are required to understand this relatively simple, but clinically important question. Ultimately, if this evidence were available, the development of evidenced-based clinical practice guidelines and consistency of practice would be facilitated.
Resumo:
Reaction of the bromoketals 3, 7a-g and 11 with tri-n-butyltin chloride and sodium cyanoborohydride in the presence of a catalytic amount of AIBN furnished the ethers 5, 8a-g and 13 via a tandem sequence comprising of a radical cyclisation reaction and tri-n-butylhalostannane and sodium cyanoborohydride mediated reductive demethoxylation of the resulting cyclic ketals.
Resumo:
Different purified proteins were shown to give purple formazan bands corresponding to the protein stain following electrophoresis on polyacrylamide gels, in the presence of nitrobluetetrazolium (NBT) and phenazine methosulfate (PMS). Both PMS and NBT are needed for formazan production which has a favorable pH at 8.5. Sulfhydryl blockers in the incubation medium inhibited this color development to different extents. While proteins with free SH groups like bovine serum albumin, ovalbumin, and urease showed this pyridine nucleotide independent artifact, nonthiol proteins, viz., bovine pancreatic ribonuclease A, and riboflavin-binding protein from chicken egg white failed to do so. The nonenzymatic formazan formation observed with different proteins could also be shown in an in vitro assay system. It is clear that the “nothing dehydrogenase” phenomenon observed in several cases may be due to the thiol group-mediated artifactual staining of proteins.
Resumo:
The cation-Cl- cotransporter (CCC) family comprises of Na+-Cl- cotransporter (NCC), Na+-K+-2Cl- cotransporters (NKCC1-2), and four K+-Cl- cotransporters (KCC1-4). These proteins are involved in several physiological activities, such as cell volume regulation. In neuronal tissues, NKCC1 and KCC2 are important in determining the intracellular Cl- levels and hence the neuronal responses to inhibitory neurotransmitters GABA and glycine. One aim of the work was to elucidate the roles for CCC isoforms in the control of nervous system development. KCC2 mRNA was shown to be developmentally up-regulated and follow neuronal maturation, whereas NKCC1 and KCC4 transcripts were highly expressed in the proliferative zones of subcortical regions. KCC1 and KCC3 mRNA displayed low expression throughout the embryogenesis. These expression profiles suggest a role for CCC isoforms in maturation of synaptic responses and in the regulation of neuronal proliferation during embryogenesis. The major aim of this work was to study the biological consequences of KCC2-deficiency in the adult CNS, by generating transgenic mice retaining 15-20% of normal KCC2 levels. In addition, by using these mice as a tool for in vivo pharmacological analysis, we investigated the requirements for KCC2 in tonic versus phasic GABAA receptor-mediated inhibition. KCC2-deficient mice displayed normal reproduction and life span, but showed several behavioral abnormalities, including increased anxiety-like behavior, impaired performance in water maze, alterations in nociceptive processing, and increased seizure susceptibility. In contrast, the mice displayed apparently normal spontaneous locomotor activity and motor coordination. Pharmacological analysis of KCC2-deficient mice revealed reduced sensititivity to diazepam, but normal gaboxadol-induced sedation, neurosteroid hypnosis and alcohol-induced motor impairment. Electrophysiological recordings from CA1-CA3 subregions of the hippocampus showed that KCC2 deficiency affected the reversal potentials of both the phasic and tonic GABA currents, and that the tonic conductance was not affected. The results suggest that requirement for KCC2 in GABAergic neurotransmission may differ among several functional systems in the CNS, which is possibly due to the more critical role of KCC2 activity in phasic compared to tonic GABAergic inhibition.