979 resultados para Transducer Excitation
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Eletrotécnica Ramo de Automação e eletrónica Industrial
Resumo:
The computations performed by the brain ultimately rely on the functional connectivity between neurons embedded in complex networks. It is well known that the neuronal connections, the synapses, are plastic, i.e. the contribution of each presynaptic neuron to the firing of a postsynaptic neuron can be independently adjusted. The modulation of effective synaptic strength can occur on time scales that range from tens or hundreds of milliseconds, to tens of minutes or hours, to days, and may involve pre- and/or post-synaptic modifications. The collection of these mechanisms is generally believed to underlie learning and memory and, hence, it is fundamental to understand their consequences in the behavior of neurons.(...)
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology.
Resumo:
Supplementary data associated with this article can be found, in the online version, at: http://dx.doi.org/10.1016/j.electacta.2015.09.169.
Resumo:
Pyrogallol, uncatalyzed bromate oscillator, electric field, pulse wave, Belousov-Zhabotinsky reaction, reversal
Resumo:
Magdeburg, Univ., Fak. für Naturwiss., Diss., 2008
Resumo:
There is described data processing at the flaw detector with combined multisectional eddy-current transducer and heterofrequency magnetic field. The application of this method for detecting flaws in rods and pipes under the conditions of significant transverse displacements is described.
Resumo:
Black-blood fast spin-echo imaging is a powerful technique for the evaluation of cardiac anatomy. To avoid fold-over artifacts, using a sufficiently large field of view in phase-encoding direction is mandatory. The related oversampling affects scanning time and respiratory chest motion artifacts are commonly observed. The excitation of a volume that exclusively includes the heart without its surrounding structures may help to improve scan efficiency and minimize motion artifacts. Therefore, and by building on previously reported inner-volume approach, the combination of a black-blood fast spin-echo sequence with a two-dimensionally selective radiofrequency pulse is proposed for selective "local excitation" small field of view imaging of the heart. This local excitation technique has been developed, implemented, and tested in phantoms and in vivo. With this method, small field of view imaging of a user-specified region in the human thorax is feasible, scanning becomes more time efficient, motion artifacts can be minimized, and additional flexibility in the choice of imaging parameters can be exploited.
Resumo:
To compare autofluorescence (AF) images obtained with the confocal scanning laser ophthalmoscope (using the Heidelberg retina angiograph; HRA) and the modified Topcon fundus camera, in a routine clinical setting. A prospective comparative study conducted at the Jules-Gonin Eye Hospital. Fifty-six patients from the medical retina clinic. All patients had complete ophthalmic slit-lamp and fundus examinations, colour and red-free fundus photography, AF imaging with both instruments, and fluorescein angiography. Cataract and fixation were graded clinically. AF patterns were analyzed for healthy and pathological features. Differences of image noise were analyzed by cataract grading and fixation. A total of 105 eyes were included. AF patterns discovered by the retina angiograph and the fundus camera images, respectively, were a dark optic disc in 72 % versus 15 %, a dark fovea in 92 % versus 4 %, sub- and intraretinal fluid visible as hyperautofluorescence on HRA images only, lipid exudates visible as hypoautofluorescence on HRA images only. The same autofluorescent pattern was found on both images for geographic atrophy, retinal pigment changes, drusen and haemorrhage. Image noise was significantly associated with the degree of cataract and/or poor fixation, favouring the fundus camera. Images acquired by the fundus camera before and after fluorescein angiography were identical. Fundus AF images differ according to the technical differences of the instruments used. Knowledge of these differences is important not only for correctly interpreting images, but also for selecting the most appropriate instrument for the clinical situation.
Resumo:
The spontaneous activity of the brain shows different features at different scales. On one hand, neuroimaging studies show that long-range correlations are highly structured in spatiotemporal patterns, known as resting-state networks, on the other hand, neurophysiological reports show that short-range correlations between neighboring neurons are low, despite a large amount of shared presynaptic inputs. Different dynamical mechanisms of local decorrelation have been proposed, among which is feedback inhibition. Here, we investigated the effect of locally regulating the feedback inhibition on the global dynamics of a large-scale brain model, in which the long-range connections are given by diffusion imaging data of human subjects. We used simulations and analytical methods to show that locally constraining the feedback inhibition to compensate for the excess of long-range excitatory connectivity, to preserve the asynchronous state, crucially changes the characteristics of the emergent resting and evoked activity. First, it significantly improves the model's prediction of the empirical human functional connectivity. Second, relaxing this constraint leads to an unrealistic network evoked activity, with systematic coactivation of cortical areas which are components of the default-mode network, whereas regulation of feedback inhibition prevents this. Finally, information theoretic analysis shows that regulation of the local feedback inhibition increases both the entropy and the Fisher information of the network evoked responses. Hence, it enhances the information capacity and the discrimination accuracy of the global network. In conclusion, the local excitation-inhibition ratio impacts the structure of the spontaneous activity and the information transmission at the large-scale brain level.
Resumo:
The impact of radial k-space sampling and water-selective excitation on a novel navigator-gated cardiac-triggered slab-selective inversion prepared 3D steady-state free-precession (SSFP) renal MR angiography (MRA) sequence was investigated. Renal MRA was performed on a 1.5-T MR system using three inversion prepared SSFP approaches: Cartesian (TR/TE: 5.7/2.8 ms, FA: 85 degrees), radial (TR/TE: 5.5/2.7 ms, FA: 85 degrees) SSFP, and radial SSFP combined with water-selective excitation (TR/TE: 9.9/4.9 ms, FA: 85 degrees). Radial data acquisition lead to significantly reduced motion artifacts (P < 0.05). SNR and CNR were best using Cartesian SSFP (P < 0.05). Vessel sharpness and vessel length were comparable in all sequences. The addition of a water-selective excitation could not improve image quality. In conclusion, radial k-space sampling reduces motion artifacts significantly in slab-selective inversion prepared renal MRA, while SNR and CNR are decreased. The addition of water-selective excitation could not improve the lower CNR in radial scanning.
Resumo:
A series of InxAl1-xAs samples (0.51≪x≪0.55)coherently grown on InP was studied in order to measure the band-gap energy of the lattice matched composition. As the substrate is opaque to the relevant photon energies, a method is developed to calculate the optical absorption coefficient from the photoluminescence excitation spectra. The effect of strain on the band-gap energy has been taken into account. For x=0.532, at 14 K we have obtained Eg0=1549±6 meV
Resumo:
The role of the Hippo pathway effector YAP1 in soft tissue sarcomas is poorly defined. Here we report that YAP1 activity is elevated in human embryonal rhabdomyosarcoma (ERMS). In mice, sustained YAP1 hyperactivity in activated, but not quiescent, satellite cells induces ERMS with high penetrance and short latency. Via its transcriptional program with TEAD1, YAP1 directly regulates several major hallmarks of ERMS. YAP1-TEAD1 upregulate pro-proliferative and oncogenic genes and maintain the ERMS differentiation block by interfering with MYOD1 and MEF2 pro-differentiation activities. Normalization of YAP1 expression reduces tumor burden in human ERMS xenografts and allows YAP1-driven ERMS to differentiate in situ. Collectively, our results identify YAP1 as a potent ERMS oncogenic driver and a promising target for differentiation therapy.