1000 resultados para Termo-mecânica. Interconector cerâmico. Interconector metálico. Cromita de lantânio. PaCOS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introdução A pneumonia hospitalar é a principal causa de morte dentre as infecções hospitalares. A prevalência de pneumonia hospitalar em Unidades de Tratamento Intensivo (UTI) varia de 10 a 65%, com taxas de mortalidade que podem variar de 24 a 76%. A pneumonia associada à ventilação mecânica (PAV) é um determinante de mortalidade independente em pacientes submetidos à ventilação mecânica. A adequação do tratamento empírico precoce parece ser fundamental no prognóstico. Os critérios atualmente estabelecidos para avaliar adequação do tratamento empírico utilizam parâmetros clínicos, escores de gravidade e, principalmente, a sensibilidade do germe causador da infecção aos antibióticos administrados. Estes resultados balizam a necessidade de possíveis modificações no esquema antimicrobiano. A possibilidade de utilizar a Procalcitonina (PCT), a Proteína-C Reativa (CRP) e o escore SOFA (Avaliação de Falência de Órgãos Relacionada a Sepse), como indicadores de resposta do paciente, comparando seu status no dia do início do tratamento antimicrobiano (D0) com a evolução destes indicadores no quarto dia de tratamento (D4) abre a possibilidade de comparar o paciente com ele próprio, independente da exuberância da expressão da resposta inflamatória que ele possa desenvolver. Os resultados desta cinética entre D0 e D4 podem ser preditivos de gravidade de infecção, de eficiência antimicrobiana, e possivelmente de sobrevivência ou mortalidade hospitalar nos pacientes com suspeita de PAV. Objetivos Determinar e comparar o valor prognóstico de sobrevivência da cinética da PCT, da CRP, dos escores clínicos CPIS (Escore Clínico de Infecção Pulmonar) e SOFA, e do APACHE II (Avaliação da Fisiologia Aguda e da Saúde Crônica) na PAV entre o diagnóstico e o quarto dia de tratamento, quando a adequação do tratamento é avaliada. Pacientes e Métodos Realizamos um estudo de coorte prospectivo observacional que avaliou 75 pacientes internados no Centro de Tratamento Intensivo clínico-cirúrgico de adultos do Hospital de Clínicas de Porto Alegre que desenvolveram PAV no período de outubro de 2003 a agosto de 2005. Os pacientes com suspeita clínica de PAV que se adequaram aos critérios de inclusão e exclusão do estudo foram os candidatos a participar. Os familiares ou representantes dos pacientes receberam esclarecimentos por escrito acerca dos exames a serem realizados, bem como dos objetivos gerais da pesquisa. Os que aceitaram participar do estudo assinaram o termo de Consentimento Informado. O projeto foi aprovado pelo Comitê de Ética em Pesquisa do Hospital de Clínicas de Porto Alegre. No dia do diagnóstico de PAV foram coletados aspirado traqueal quantitativo, hemoculturas e sangue para a realização de dosagens de PCT, CRP, hemograma, plaquetas, creatinina, bilirrubinas, gasometria arterial e radiografia de tórax, com o objetivo de calcular o CPIS e o escore SOFA. No terceiro dia de tratamento foram novamente coletados aspirados traqueais quantitativos e os demais exames para o cálculo do CPIS. No quarto dia foi coletado sangue para dosagens de PCT, CRP e para os demais exames necessários para o cálculo do SOFA. Os pacientes foram acompanhados por 28 dias após o diagnóstico de PAV, quando foram considerados sobreviventes. Todos os pacientes que morreram antes do vigésimo oitavo dia foram considerados não-sobreviventes. Resultados Os níveis de PCT foram mais baixos nos sobreviventes em D0 (p=0.003) e em D4 (p=0.001). Os níveis de CRP não foram diferentes em sobreviventes e nãosobreviventes em D0 (p=0.77) e em D4 (p=0.14). O CPIS não pode diferenciar sobreviventes de não-sobrevientes em D0 (p=0.32) e em D3 (p=0.45). ΔCPIS decrescente não foi correlacionado a sobrevivência (p=0.59), o mesmo ocorrendo com CPIS <6 em D3 (p=0.79). Pacientes que morreram antes de D4 não puderam ter sua cinética calculada e foram considerados casos perdidos. Variáveis incluídas no modelo de regressão logística univariável para sobrevivência foram idade, APACHE II, ΔSOFA decrescente, ΔPCT decrescente e ΔCRP decrescente. Sobrevivência foi diretamente correlacionada a ΔPCT decrescente com RC = 5.67 (1.78;18.03) p = 0.003, ΔCRP com RC = 3.78 (1.24;11.50) p = 0.02, ΔSOFA decrescente com RC = 3.08 (1.02;9.26) p = 0.05 e escore APACHE II com RC = 0.92 (0.86;0.99) p = 0.02. O modelo de regressão logística multivariável para sobrevivência incluiu todas as variáveis participantes da análise univariável. Somente ΔPCT decrescente com RC = 4.43 (1.08;18.18) p = 0.04 e ΔCRP com RC = 7.40 (1.58;34.73) p = 0.01 permaneceram significativos. A avaliação da cinética dos marcadores inflamatórios e a associação com sobrevida no estudo mostraram que: - Em 95,1% dos sobreviventes houve queda dos níveis de PCT ou de CRP. - Em 61% dos sobreviventes ambos os níveis de PCT e de CRP caíram. Apenas 4,9% dos sobreviventes tiveram níveis de PCT e CRP crescentes. Com relação aos não-sobreviventes, 78.9% tiveram pelo menos um dos dois marcadores ou ambos com níveis crescentes. Conclusão As cinéticas da PCT e da CRP, obtidas pelas dosagens de seus níveis no dia do diagnóstico e no 4º dia de tratamento, podem predizer sobrevivência em pacientes com PAV. A queda dos níveis de pelo menos um destes marcadores ou de ambos indica maior chance de sobrevivência.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objetivo: Determinar os níveis da endotelina-1 (ET-1) no sangue de cordão umbilical e no plasma de recém-nascidos pré-termo com doença da membrana hialina (DMH) e comparar estes níveis com controles. Metodologia: Nós determinamos os níveis da ET-1 em 18 pré-termos com DMH que não tiveram diagnóstico clínico ou ecocardiográfico de hipertensão pulmonar e em 22 prétermos sem DMH (peso de nascimento < 2000g e idade gestacional ≤ 34 semanas). Foram utilizados sangue do cordão umbilical e uma segunda amostra de sangue coletada durante as primeiras 12 a 48 horas de vida após o nascimento, para determinação da ET-1 por enzimoimunoensaio. Resultados: As medianas dos valores da ET-1 do sangue de cordão umbilical foram similares nos dois grupos (controles: 10,9pg/mL e DMH: 11,4pg/mL) e foram significativamente maiores do que as da segunda amostra (controles: 1,7pg/mL, DMH: 3,5pg/mL; p<0,001 para ambos os grupos). As medianas da ET-1 da segunda amostra foram significativamente maiores no grupo com DMH do que no grupo controle (p<0,001). Houve uma correlação positiva entre dosagem da ET-1 na segunda amostra e o Escore de Gravidade Neonatal SNAPPE II (r=0,36, p=0,02), e duração da ventilação mecânica (r=0,59, p=0,04). Um declíneo mais lento nos valores da ET-1 do nascimento para as 12 a 48h de vida foi observado nos recém-nascidos pré-termo com DMH comparados com os controles. Conclusões: Recém-nascidos pré-termo com e sem DMH tem níveis semelhantes da ET-1 no sangue de cordão umbilical, enquanto os níveis da ET-1 no recém-nascido com 12 a 48 horas de vida foram maiores nos com DMH do que nos controles. Níveis elevados da ET-1 na DMH sugerem que este mediador está envolvido na fisiopatologia da DMH.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Piauí state is a major producer of traditional red ceramic burning as bricks, tiles and ceramic tiles, with its main production center located in the city of Teresina. The state has large reserves of raw materials that can be used in the ceramic coating as clays, quartz, talc and carbonates. However, in the preparation of ceramic bodies using only a mixture of clays with different characteristics. The study aims to evaluate the effect of adding two types of carbonates in the ceramic semiporous mass coating produced in Piauí and then to verify the potential use of these carbonates as supplementary raw material product manufactured or the feasibility of obtaining a ceramic plate that meets the specifications for the porous coating. For this, were characterized the ceramic Piauí coating mass, a calcitic carbonate and a dolomitic, were made in the levels of 2, 4, 8, 16, and 32%. The masses were formed by pressing and burneds in two environments: a laboratory furnace (1080°C, 1120°C, 1140°C, and 1160°C) and an industrial furnace (1140°C). Then, following tests of linear shrinkage water absorption, apparent porosity, bulk density and flexural strength. Furthermore, the fired specimens were tested for their macrostructure and microstructure. The results showed the possibility of using the carbonate in ceramic mass flooring produced in Piauí, as added in small proportions improved dimensional stability and increased mechanical strength of ceramics pieces. It also proved itself possible to produce porous coating when added in higher levels

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nickel alloys are frequently used in applications that require resistance at high temperatures associated with resistance to corrosion. Alloys of Ni-Si-C can be obtained by means of powder metallurgy in which powder mixtures are made of metallic nickel powders with additions of various alloying carriers for such were used in this study SiC, Si3N4 or Si metal with graphite. Carbonyl Ni powder with mean particle size of 11 mM were mixed with 3 wt% of SiC powders with an average particle size of 15, 30 and 50 μm and further samples were obtained containing 4 to 5% by mass of SiC with average particle size of 15 μm. Samples were also obtained by varying the carrier alloy, these being Si3N4 powder with graphite, with average particle size of 1.5 and 5 μm, respectively. As a metallic Si graphite with average particle size of 12.5 and 5 μm, respectively. The reference material used was nickel carbonyl sintered without adding carriers. Microstructural characterization of the alloys was made by optical microscopy and scanning electron microscopy with semi-quantitative chemical analysis. We determined the densities of the samples and measurement of microhardness. We studied the dissociation of carriers alloy after sintering at 1200 ° C for 60 minutes. Was evaluated also in the same sintering conditions, the influence of the variation of average particle size of the SiC carrier to the proportion of 3% by mass. Finally, we studied the influence of variation of the temperatures of sintering at 950, 1080 and 1200 ° C without landing and also with heights of 30, 60, 120 and 240 minutes for sintering where the temperature was 950 °C. Dilatometry curves showed that the SiC sintered Ni favors more effectively than other carriers alloy analyzed. SiC with average particle size of 15 μm active sintering the alloy more effectively than other SiC used. However, with the chemical and morphological analyzes for all leagues, it was observed that there was dissociation of SiC and Si3N4, as well as diffusion of Si in Ni matrix and carbon cluster and dispersed in the matrix, which also occurred for the alloys with Si carriers and metallic graphite. So the league that was presented better results containing Si Ni with graphite metallic alloy as carriers, since this had dispersed graphite best in the league, reaching the microstructural model proposed, which is necessary for material characteristic of solid lubricant, so how we got the best results when the density and hardness of the alloy

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of activities the of oil and gas sector have promoted the search for suitable materials for cementing oil wells. In the state of the Rio Grande do Norte, the integrity of the cement sheath tends to be impaired during steam injection, a procedure necessary to increase oil recovery in reservoirs with low-viscosity oil. The geopolymer is a material that can be used as alternative cement, since it has been used in the production of fire-resistant components, building structures, and for the control of toxic or radioactive residues. Geopolymers result from condensation polymer alkali aluminosilicates and silicates resulting three-dimensional polymeric structures. They are produced in a manner different from that of Portland cement, which is made an activating solution that is mixed with geopolymer precursor. Among the few works studied allowed us to conclude that the pastes prepared with metakaolin as precursor showed better performance of its properties. Several studies show the addition of waste clay as a means of reducing cost and improving end of the folder properties. On this basis, the goal is to study the influence of the addition of ceramic waste in geopolymer paste. To develop the study of rheology tests were carried out, filtered, thickening time, compressive strength, free water, specific gravity and permeability, according to the American Pretoleum Institute (API). The results for all formulations studied show that the folders have high mechanical strength to a light paste; low filtrate volume, absence of free water, very low permeability, slurry, consistent with a light paste, and thickening time low that can be corrected with the use of a retardant handle. For morphological characterization, microstructural, physical, chemical and thermal tests were carried out by XRD, MEV, DTA, TG, FTIR. In the trial of XRD, it was found that geopolymer is an amorphous material, with a peak of crystalline kaolinite. In tests of TG / DTA, revealed the presence of a significant event, which represents the mass loss related to water, and also observed the reduction of weight loss by increasing the concentration of ceramic waste. In the trial of MEV, we found a uniform matrix without the presence of other phases. In the trial of FT-IR, we observed the presence of the band related to water. From all results it was determined that the optimum concentration range of use is between 2.5 and 5% of waste ceramic

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The production of waste from urban and industrial activities is one of the factors of environmental contamination and has aroused attention of the scientific community, in the sense of its reuse. On the other hand, the city of Salvador/Ba, with approximately 262 channels, responsible for storm water runoff, produces every year, by the intervention of cleaning and clearing channels, a significant volume of sediments (dredged mud), and thus an appropriate methodology for their final destination. This study aims to assess the influence of incorporation of these tailings in arrays of clay for production of interlocked block ceramic, also known as ceramic paver. All the raw materials from the metropolitan region of Salvador (RMS) were characterized by x-ray fluorescence, x-ray diffraction, thermal analysis (TG and TDA), particle size analysis and dilatometry. With the use of statistical experimental planning technique, ternary diagram was defined in the study region and the analyzed formulations. The specimens were prepared with dimensions of 60x20x5mm³, by uniaxial pressing of 30 MPa and after sintering at temperatures of 900°, 1000º and 1100ºC the technological properties were evaluated: linear shrinkage, water absorption, apparent porosity, apparent specifies mass, flexural rupture and module. For the uniaxial compression strength used cylindrical probe body with Ø 50 mm. The standard mass (MP) was prepared with 90% by weight of clay and 10% by weight of Channel sediment (SCP), not being verified significant variations in the properties of the final product. With the incorporation of 10% by weight of manganese residue (PFM) and 10% by weight of the Ceramic waste (RCB) in the mass default, in addition to adjusting the plasticity due to less waste clay content, provided increased linear firing shrinkage, due the significant concentration of K2O, forming liquid phase at low temperature, contributing to decreased porosity and mechanical resistance, being 92,5 MPa maximum compressive strength verified. After extract test leachate and soluble, the piece containing 10% of the PFM, was classified as non-hazardous and inert material according to NBR10004/04 ABNT. The results showed the feasibility on using waste, SCP, RCB and PFM clay mass, at temperatures above 900ºC, paver ceramic production, according to the specifications of the technical standards, so that to exceed the 10% of the PFM, it becomes imperative to conduct studies of environmental impacts

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Steam injection is the most used thermal recovery method of oil nowadays because of the high degree of development of the technique that allows high recovery factors. However, injection of superheated steam into the reservoir affects the entire structure of the well, including the cemented layer that presents a retrogression of compressive strength and increases the permeability due to formation of more crystalline and denser phases at temperatures above 110 °C. These changes result in failures in the cement that favor the entrance of formation fluids into the annulus space resulting in unsafe operations and restrictions in the economic life of the well. But the strength retrogression can be prevented by partial replacement of cement by silica-based materials that reduce the CaO/SiO2 ratio of cement slurries changing the trajectory of the reactions, converting those deleterious phases in phases with satisfactory mechanical strength and permeability. The aim of this study was to evaluate the behavior of a ceramic waste material rich in silica in partial and total substitution of a mineral additive used to fight the strength retrogression of cement slurries subjected to high temperatures. The evaluation was made by compression, X-ray diffraction (XRD) and thermogravimetry (TG/DTG). The samples were submitted to a cycle of low temperature (38 °C) for 28 days and a cycle of low temperature followed by exposure to 280 ºC and 1000 psi by 3 days. The results showed that slurries with additions of up to 30% of the waste material are not enough to prevent the strength retrogression, while slurries with additions of the waste material combined with silica flour in various proportions produced hydrated products of low Ca/Si ratios that maintained the compressive strength at satisfactory levels

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The preparation of cement slurries for offshore well cementing involves mixing all solid components to be added to the mixing water on the platform. The aim of this work was to study the formulation of pre-prepared dry mixtures, or grouts, for offshore oilwell cementing. The addition of mineral fillers in the strength of lightweight grouts applied for depths down to 400 m under water depths of 500 m was investigated. Lightweight materials and fine aggregates were selected. For the choice of starting materials, a study of the pozzolanic activity of low-cost fillers such as porcelain tile residue, microsilica and diatomaceous earth was carried out by X-ray diffraction and mechanical strength tests. Hardened grouts containing porcelain tile residue and microsilica depicted high strength at early ages. Based on such preliminary investigation, a study of the mechanical strength of grouts with density 1.74 g/cm3 (14.5 lb/gal) cured initially at 27 °C was performed using cement, microsilica, porcelain tile residue and an anti-foaming agent. The results showed that the mixture containing 7% of porcelain tile residue and 7% of microsilica was the one with the highest compressive strength after curing for 24 hours. This composition was chosen to be studied and adapted for offshore conditions based on testes performed at 4 °C. The grout containing cement, 7% of porcelain tile residue, 7% of active silica and admixtures (CaCl2), anti-foaming and dispersant resulted satisfactory rheology and mechanical strength after curing for 24 hours of curing

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work proposes a formulation for optimization of 2D-structure layouts submitted to mechanic and thermal shipments and applied an h-adaptive filter process which conduced to computational low spend and high definition structural layouts. The main goal of the formulation is to minimize the structure mass submitted to an effective state of stress of von Mises, with stability and lateral restriction variants. A criterion of global measurement was used for intents a parametric condition of stress fields. To avoid singularity problems was considerate a release on the stress restriction. On the optimization was used a material approach where the homogenized constructive equation was function of the material relative density. The intermediary density effective properties were represented for a SIMP-type artificial model. The problem was simplified by use of the method of finite elements of Galerkin using triangles with linear Lagrangian basis. On the solution of the optimization problem, was applied the augmented Lagrangian Method, that consists on minimum problem sequence solution with box-type restrictions, resolved by a 2nd orderprojection method which uses the method of the quasi-Newton without memory, during the problem process solution. This process reduces computational expends showing be more effective and solid. The results materialize more refined layouts with accurate topologic and shape of structure definitions. On the other hand formulation of mass minimization with global stress criterion provides to modeling ready structural layouts, with violation of the criterion of homogeneous distributed stress

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The red ceramics and structural ceramics, as they are known, include ceramic materials made by blocks of seals and structures, bricks, tiles, smail flagstones manacles, rustic floors and ornamental materials. Their fabrication uses raw material such as clay and clay sites, with some content of impurity. It has good durability and mechanical strength to compression, low cost, making it one of the mainly used materials in civil engineering. The incorporation of many industrial activities residue to ceramic products is a technological alternative for reducing the environmental impact caused by its carefree disposal. This incorporation can promote chemical change and inertness of metals from residue, by fixation in the glassy phase of ceramic during the burning stage. The main aim of this project is to study the technical feasibility of the addition of ceramic oven ash into formulations of mass for structural ceramics. In this project two kinds of clay (plastic and non-plastic) were used, as well as the ash from firewood used in the process of burning of structural ceramics. A group of experiments was outlined, which permitted the evaluation of the influence of the burning cycle in different temperatures of the ash content in formulations for ceramic blocks through technological properties, mechanical behavior and microstructure. Five samples were processed of each one of the masses of plastic and non-plastic clay without addition of ash and with addition of ash on the percentages of 10 % and 20 %, for temperatures of 850 °C, 950 °C, 1050 °C and 1150 °C, obtained through sinterization process. Among the studied compositions, the one which presented best performance was the mass of clay with 10 % of ash, at temperature of 1150 °C, with the smallest absorption of water, the smallest apparent porosity, specific apparent mass a bit over the others and greatest mechanical resistance to flexion. The composition made confirmed the technical feasibility of the use of ash in the mass for structural ceramics with maintenance of its necessary characteristics for its purposes

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The production of red ceramic is an industrial activity that causes an intense impact. The manufacture of its products considerably increases the demand for natural resources, mainly with the extraction of raw material. The ceramic material produced generates waste, such as ash firewood and chamote. The residue from the beneficiation of kaolin is deposited in a poor, degrades the environment and contaminate water sources and soil, constituting in this manner, ecological disasters. The main objective of this work is to develop the formulation of a ceramic product consisting solely of industrial solid wastes, from ceramic tiles, (chamote) residue of kaolin and ash firewood. It is assumed that this product made in the laboratory can be used in coatings, wall and floor. The aim is to facilitate the replacement of the raw material of original composition of a ceramic body, for waste, while the process of production equal to the conventionally used, so that the properties of the product are reproduced. This work is characterized waste as its chemical composition, analysis of particle size, X-ray diffraction and thermal behavior. Several formulations were studied. The mass of waste was prepared by dry process, pressed to 25 MPa, and then burned in muffle type oven to 850, 950, 1050 and 1150 °C. The results showed that it is technically possible to produce porous tiles only with waste. It was found that the formulations of bodies play a key role in the properties of the final product, as well as the sintering temperature and heating rates. RN in the waste of kaolin is estimated at 15,000 t/month, about 3,000 gray t/month and chamote with 10 million pieces/month damaged. The presence of carbonates of calcium and magnesium at 1050 ° C results in an appropriate porosity and mechanical strength. The formulation M3JE, composed of 69% waste of kaolin, 7.7% and 23.3% of chamote of gray, became suitable for porous materials with the strength and absorption within the level of national and international standards

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Present work proposed to map and features the wear mechanisms of structural polymers of engineering derived of the sliding contact with a metallic cylindrical spindle submitted to eccentricity due to fluctuations in it is mass and geometric centers. For this it was projected and makes an experimental apparatus from balancing machine where the cylindrical counterbody was supported in two bearings and the polymeric coupon was situated in a holder with freedom of displacement along counterbody. Thus, the experimental tests were standardized using two position of the two bearings (Fixed or Free) and seven different positions along the counterbody, that permit print different conditions to the stiffness from system. Others parameters as applied normal load, sliding velocity and distance were fixed. In this investigation it was used as coupon two structural polymers of wide quotidian use, PTFE (polytetrafluroethylene) and PEEK (poly-ether-ether-ketone) and the AISI 4140 alloy steel as counterbody. Polymeric materials were characterized by thermal analysis (thermogravimetric, differential scanning calorimetry and dynamic-mechanical), hardness and rays-X diffractometry. While the metallic material was submitted at hardness, mechanical resistance tests and metallographic analysis. During the tribological tests were recorded the heating response with thermometers, yonder overall velocity vibration (VGV) and the acceleration using accelerometers. After tests the wear surface of the coupons were analyzed using a Scanning Electronic Microscopy (SEM) to morphological analysis and spectroscopy EDS to microanalysis. Moreover the roughness of the counterbody was characterized before and after the tribological tests. It was observed that the tribological response of the polymers were different in function of their distinct molecular structure. It were identified the predominant wear mechanisms in each polymer. The VGV of the PTFE was smaller than PEEK, in the condition of minimum stiffness, in function of the higher loss coefficient of that polymer. Wear rate of the PTFE was more of a magnitude order higher than PEEK. With the results was possible developed a correlation between the wear rate and parameter (E/ρ)1/2 (Young modulus, E, density, ρ), proportional at longitudinal elastic wave velocity in the material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)