947 resultados para Steel structure
Resumo:
The thermal loading of an open car park building structure is going to be analysed, based on different fire scenarios that depend on the type of vehicle (different heat release rate). The compartment is going to be fixed and the thermal effect on beams is going to be analysed, depending on the vehicle position. The result of simple calculation method will be used to determine several temperature-time curves. The simple calculation method (Hasemi method) is also to be compared with the calculations of the Elefir-EN calculation program to analyse the thermal effect of the localized fire on beams.
Resumo:
Near threshold fatigue crack growth behavior of a high strength steel under different temper levels was investigated. It is found that the observed variations in ΔKth could predominantly be attributed to roughness induced crack closure. The closure-free component of the threshold stress intensity range, ΔKeff,th showed a systematic variation with monotonic yield strength.
Resumo:
Soot generated from the combustion process in diesel engines affect engine tribology. In this paper, two diesel soot samples; from engine exhaust and oil filter are suspended in hexadecane oil and the suspension is used to lubricate a steel ball on steel flat sliding contact at a contact pressure of 1.3 GPa. The friction and wear of the steel flat are recorded. The data are compared with those recorded when the soot is generated by burning ethylene gas. The rationale for the comparatively poor tribology of diesel soot is explored by quantifying the size and shape of primary particles and agglomerates, hardness of single primary soot particles, the crystallinity and surface and near surface chemistry of soot and interparticle adhesion.
Resumo:
Composite coatings were obtained on A3 steel by hot dipping aluminum(HDA) at 720 ℃ for 6 min and micro-plasma oxidation(MPO) in alkali electrolyte. The surface morphology, element distribution and interface structure of composite coatings were studied by means of XRD, SEM and EDS. The results show that the composite coatings obtained through HDA/MPO on A3 steel consist of four layers. From the surface to the substrate, the layer is loose Al2O3 ceramic, compact Al2O3 ceramic, Al and FeAl intermetallic compound layer in turn. The adhesions among all the layers are strengthened because the ceramic layer formed at the Al surface originally, FeAl intermetallic compound layer and substrate are combined in metallurgical form through mutual diffusion during HDA process.Initial experiment results disclose that the anti-corrosion performance and wear resistance of composite coating are obviously improved through HDA/MPO treatment.
Resumo:
Ceramic coatings were formed by plasma electrolytic oxidation (PEO) on aluminized steel. Characteristics of the average anodic voltages versus treatment time were observed during the PEO process. The micrographs, compositions and mechanical properties of ceramic coatings were investigated. The results show that the anodic voltage profile for processing of aluminized steel is similar to that for processing bulk Al alloy during early PEO stages and that the thickness of ceramic coating increases approximately linearly with the Al layer consumption. Once the Al layer is completely transformed, the FeAl intermetallic layer begins to participate in the PEO process. At this point, the anodic voltage of aluminized steel descends, and the thickness of ceramic coating grows more slowly. At the same time, some micro-cracks are observed at the Al2O3/FeAl interface. The final ceramic coating mainly consists of gamma-Al2O3, mullite, and alpha-Al2O3 phases. PEO ceramic coatings have excellent elastic recovery and high load supporting performance. Nanohardness of ceramic coating reaches about 19.6 GPa. (c) 2007 Elsevier B. V. All rights reserved.
Resumo:
Composite coatings were obtained on A3 steel by hot dipping aluminum(HAD) at 720 degreesC for 6 min and micro-plasma oxidation (MPO) in alkali electrolyte. The surface morphology, element distribution and interface structure of composite coatings were studied by means of XRD, SEM and EDS. The results show that the composite coatings obtained through HAD/MPO on A3 steel consist of four layers. From the surface to the substrate, the layer is loose Al2O3 ceramic, compact Al2O3 ceramic, At and FeAl intermetallic compound layer in turn. The adhesions among all the layers are strengthened because the ceramic layer formed at the At surface originally, FeAl intermetallic compound layer and substrate are combined in metallurgical form through mutual diffusion during HAD process. Initial experiment results disclose that the anti-corrosion performance and wear resistance of composite coating are obviously improved through HAD/MPO treatment.
Resumo:
An approach for seismic damage identification of a single-storey steel concentrically braced frame (CBF) structure is presented through filtering and double integration of a recorded acceleration signal. A band-pass filter removes noise from the acceleration signal followed by baseline correction being used to reduce the drift in velocity and displacement during numerical integration. The pre-processing achieves reliable numerical integration that predicts the displacement response accurately when compared to the measured lateral in-plane displacement of the CBF structure. The lateral displacement of the CBF structure is used to infer buckling and yielding of bracing members through seismic tests. The level of interstorey drift of the CBF during a seismic excitation allows the yield and buckling of the bracing members to be identified and indirectly detects damage based on exceedance of calculated displacement limits. The calculated buckling and yielding displacement threshold limits used to identify damage are demonstrated to accurately identify initial buckling and yielding in the bracing members.
Resumo:
This paper presents a seismic response investigation into a code designed concentrically braced frame structure that is subjected to but not designed for in-plan mass eccentricity. The structure has an accidental uneven distribution of mass in plan resulting in an increased torsional component of vibration. The level of inelasticity that key structural elements in plan mass asymmetric structures are subjected to is important when analysing their ability to sustain uneven seismic demands. In-plan mass asymmetry of moment resisting frame and shear wall type structures have received significant investigation, however, the plan asymmetric response of braced frame type structures is less well understood. A three-dimensional non-linear time history analysis (NLTHA) model is created to capture the torsional response of the plan mass asymmetric structure to quantify the additional ductility demand, interstorey drifts and floor rotations. Results show that the plan mass asymmetric structure performs well in terms of ductility demand, but poorly in terms of interstorey drifts and floor rotations when compared to the plan mass symmetric structure. New linear relationships are developed between the normalised ductility demand and normalised slenderness of the bracing on the sides of the plan mass symmetric/asymmetric structures that the mass is distributed towards and away from.
Resumo:
A new approach for global detection of seismic damage in a single-storey steel concentrically braced frame (CBF) structure is presented. The filtered lateral in-plane acceleration response of the CBF structure is integrated twice to provide the lateral in-plane displacement which is used to infer buckling and yielding damage. The level of interstorey drift of the CBF during a seismic excitation allows the yield and buckling of the bracing members to be identified and indirectly detects damage based on exceedance of calculated lateral in-plane displacement limits. A band-pass filter removes noise from the acceleration signal followed by baseline correction being used to reduce the drift in velocity and displacement during numerical integration. This pre-processing results in reliable numerical integration of the frame acceleration that predicts the displacement response accurately when compared to the measured lateral displacement of the CBF structure. Importantly, the structural damage is not assumed through removal of bracing members, rather damage is induced through actual seismic loading. The buckling and yielding displacement threshold limits used to identify damage are demonstrated to accurately identify the initiation of buckling and yielding.
Resumo:
The aim of this study was to analyze the effect of successive TIG (tungsten inert gas) welding repairs on the reverse bending fatigue strength of AISI 4130 steel, which is widely used in components critical to the flight-safety. In order to simulate the abrupt maneuvers, wind bursts, motor vibration and helixes efforts, which generate cyclic bending loadings at the welded joints of a specific aircraft component called motor cradle, experimental reverse bending fatigue tests were carried out on specimens made from hot-rolled steel plate, 1.10 mm (0.043 in) thick, by mean of a SCHENK PWS equipment, with load ratio R = -1, under constant amplitude, at 30 Hz frequency and room temperature. It was observed that the bending fatigue strength decreases after the TIG (Tungsten Inert Gas) welding process application on AISI 4130 steel, with subsequent decrease due to re-welding sequence as well. Microstructural analyses and microhardness measurements on the base material, heat-affected zone (HAZ) and weld metal, as well as the effects of the weld bead geometry on the obtained results, have complemented this study.