985 resultados para Spectrum Bias
Resumo:
Rationale: Piper methysticum (Kava) has been withdrawn in European, British, and Canadian markets due to concerns over hepatotoxic reactions. The WHO recently recommended research into “aqueous” extracts of Kava. Objective: The objective of this study was to conduct the first documented human clinical trial assessing the anxiolytic and antidepressant efficacy of an aqueous extract of Kava. Design and participants: The Kava Anxiety Depression Spectrum Study was a 3-week placebo-controlled, double-blind crossover trial that recruited 60 adult participants with 1 month or more of elevated generalized anxiety. Five Kava tablets per day were prescribed containing 250 mg of kavalactones/day. Results: The aqueous extract of Kava reduced participants' Hamilton Anxiety Scale score in the first controlled phase by −9.9 (CI = 7.1, 12.7) vs. −0.8 (CI = −2.7, 4.3) for placebo and in the second controlled phase by −10.3 (CI = 5.8, 14.7) vs. +3.3 (CI = −6.8, 0.2). The pooled effect of Kava vs. placebo across phases was highly significant (p < 0.0001), with a substantial effect size (d = 2.24, η² [sub]p[sub] = 0.428). Pooled analyses also revealed highly significant relative reductions in Beck Anxiety Inventory and Montgomery–Asberg Depression Rating Scale scores. The aqueous extract was found to be safe, with no serious adverse effects and no clinical hepatotoxicity. Conclusions: The aqueous Kava preparation produced significant anxiolytic and antidepressant activity and raised no safety concerns at the dose and duration studied. Kava appears equally effective in cases where anxiety is accompanied by depression. This should encourage further study and consideration of globally reintroducing aqueous rootstock extracts of Kava for the management of anxiety.
Resumo:
Mosston & Ashworth‟s Spectrum of Teaching styles was first published in 1966 and is potentially the longest surviving model of teaching within the field of physical education. Its longevity and influence is surely testament to its value and influence. Many tools have also been developed through the years based on The Spectrum of Teaching Styles. In 2005 as part of a doctoral study, this tool was developed by the author, Dr Edwards and Dr Ashworth for researchers and teachers to identify which teaching styles were being utilised from The Spectrum when teaching physical education. It could also be utilised for self-assessment of the teaching styles and individual uses, or those who work with Physical Education Teacher Education courses. The development of this tool took approximately 4 months, numerous emails and meetings. This presentation will outline this process, along with the reasons why such a tool was developed and the differences between it and others like it.
Resumo:
The main objective of this PhD was to further develop Bayesian spatio-temporal models (specifically the Conditional Autoregressive (CAR) class of models), for the analysis of sparse disease outcomes such as birth defects. The motivation for the thesis arose from problems encountered when analyzing a large birth defect registry in New South Wales. The specific components and related research objectives of the thesis were developed from gaps in the literature on current formulations of the CAR model, and health service planning requirements. Data from a large probabilistically-linked database from 1990 to 2004, consisting of fields from two separate registries: the Birth Defect Registry (BDR) and Midwives Data Collection (MDC) were used in the analyses in this thesis. The main objective was split into smaller goals. The first goal was to determine how the specification of the neighbourhood weight matrix will affect the smoothing properties of the CAR model, and this is the focus of chapter 6. Secondly, I hoped to evaluate the usefulness of incorporating a zero-inflated Poisson (ZIP) component as well as a shared-component model in terms of modeling a sparse outcome, and this is carried out in chapter 7. The third goal was to identify optimal sampling and sample size schemes designed to select individual level data for a hybrid ecological spatial model, and this is done in chapter 8. Finally, I wanted to put together the earlier improvements to the CAR model, and along with demographic projections, provide forecasts for birth defects at the SLA level. Chapter 9 describes how this is done. For the first objective, I examined a series of neighbourhood weight matrices, and showed how smoothing the relative risk estimates according to similarity by an important covariate (i.e. maternal age) helped improve the model’s ability to recover the underlying risk, as compared to the traditional adjacency (specifically the Queen) method of applying weights. Next, to address the sparseness and excess zeros commonly encountered in the analysis of rare outcomes such as birth defects, I compared a few models, including an extension of the usual Poisson model to encompass excess zeros in the data. This was achieved via a mixture model, which also encompassed the shared component model to improve on the estimation of sparse counts through borrowing strength across a shared component (e.g. latent risk factor/s) with the referent outcome (caesarean section was used in this example). Using the Deviance Information Criteria (DIC), I showed how the proposed model performed better than the usual models, but only when both outcomes shared a strong spatial correlation. The next objective involved identifying the optimal sampling and sample size strategy for incorporating individual-level data with areal covariates in a hybrid study design. I performed extensive simulation studies, evaluating thirteen different sampling schemes along with variations in sample size. This was done in the context of an ecological regression model that incorporated spatial correlation in the outcomes, as well as accommodating both individual and areal measures of covariates. Using the Average Mean Squared Error (AMSE), I showed how a simple random sample of 20% of the SLAs, followed by selecting all cases in the SLAs chosen, along with an equal number of controls, provided the lowest AMSE. The final objective involved combining the improved spatio-temporal CAR model with population (i.e. women) forecasts, to provide 30-year annual estimates of birth defects at the Statistical Local Area (SLA) level in New South Wales, Australia. The projections were illustrated using sixteen different SLAs, representing the various areal measures of socio-economic status and remoteness. A sensitivity analysis of the assumptions used in the projection was also undertaken. By the end of the thesis, I will show how challenges in the spatial analysis of rare diseases such as birth defects can be addressed, by specifically formulating the neighbourhood weight matrix to smooth according to a key covariate (i.e. maternal age), incorporating a ZIP component to model excess zeros in outcomes and borrowing strength from a referent outcome (i.e. caesarean counts). An efficient strategy to sample individual-level data and sample size considerations for rare disease will also be presented. Finally, projections in birth defect categories at the SLA level will be made.
Resumo:
Spectrum sensing is considered to be one of the most important tasks in cognitive radio. Many sensing detectors have been proposed in the literature, with the common assumption that the primary user is either fully present or completely absent within the window of observation. In reality, there are scenarios where the primary user signal only occupies a fraction of the observed window. This paper aims to analyse the effect of the primary user duty cycle on spectrum sensing performance through the analysis of a few common detectors. Simulations show that the probability of detection degrades severely with reduced duty cycle regardless of the detection method. Furthermore we show that reducing the duty cycle has a greater degradation on performance than lowering the signal strength.
Resumo:
Nonlinear filter generators are common components used in the keystream generators for stream ciphers and more recently for authentication mechanisms. They consist of a Linear Feedback Shift Register (LFSR) and a nonlinear Boolean function to mask the linearity of the LFSR output. Properties of the output of a nonlinear filter are not well studied. Anderson noted that the m-tuple output of a nonlinear filter with consecutive taps to the filter function is unevenly distributed. Current designs use taps which are not consecutive. We examine m-tuple outputs from nonlinear filter generators constructed using various LFSRs and Boolean functions for both consecutive and uneven (full positive difference sets where possible) tap positions. The investigation reveals that in both cases, the m-tuple output is not uniform. However, consecutive tap positions result in a more biased distribution than uneven tap positions, with some m-tuples not occurring at all. These biased distributions indicate a potential flaw that could be exploited for cryptanalysis.
Resumo:
In this paper we propose a new method for utilising phase information by complementing it with traditional magnitude-only spectral subtraction speech enhancement through Complex Spectrum Subtraction (CSS). The proposed approach has the following advantages over traditional magnitude-only spectral subtraction: (a) it introduces complementary information to the enhancement algorithm; (b) it reduces the total number of algorithmic parameters, and; (c) is designed for improving clean speech magnitude spectra and is therefore suitable for both automatic speech recognition (ASR) and speech perception applications. Oracle-based ASR experiments verify this approach, showing an average of 20% relative word accuracy improvements when accurate estimates of the phase spectrum are available. Based on sinusoidal analysis and assuming stationarity between observations (which is shown to be better approximated as the frame rate is increased), this paper also proposes a novel method for acquiring the phase information called Phase Estimation via Delay Projection (PEDEP). Further oracle ASR experiments validate the potential for the proposed PEDEP technique in ideal conditions. Realistic implementation of CSS with PEDEP shows performance comparable to state of the art spectral subtraction techniques in a range of 15-20 dB signal-to-noise ratio environments. These results clearly demonstrate the potential for using phase spectra in spectral subtractive enhancement applications, and at the same time highlight the need for deriving more accurate phase estimates in a wider range of noise conditions.
Resumo:
Nonlinear filter generators are common components used in the keystream generators for stream ciphers and more recently for authentication mechanisms. They consist of a Linear Feedback Shift Register (LFSR) and a nonlinear Boolean function to mask the linearity of the LFSR output. Properties of the output of a nonlinear filter are not well studied. Anderson noted that the m-tuple output of a nonlinear filter with consecutive taps to the filter function is unevenly distributed. Current designs use taps which are not consecutive. We examine m-tuple outputs from nonlinear filter generators constructed using various LFSRs and Boolean functions for both consecutive and uneven (full positive difference sets where possible) tap positions. The investigation reveals that in both cases, the m-tuple output is not uniform. However, consecutive tap positions result in a more biased distribution than uneven tap positions, with some m-tuples not occurring at all. These biased distributions indicate a potential flaw that could be exploited for cryptanalysis
Resumo:
Background: Clinical practice and clinical research has made a concerted effort to move beyond the use of clinical indicators alone and embrace patient focused care through the use of patient reported outcomes such as healthrelated quality of life. However, unless patients give consistent consideration to the health states that give meaning to measurement scales used to evaluate these constructs, longitudinal comparison of these measures may be invalid. This study aimed to investigate whether patients give consideration to a standard health state rating scale (EQ-VAS) and whether consideration of good and poor health state descriptors immediately changes their selfreport. Methods: A randomised crossover trial was implemented amongst hospitalised older adults (n = 151). Patients were asked to consider descriptions of extremely good (Description-A) and poor (Description-B) health states. The EQ-VAS was administered as a self-report at baseline, after the first descriptors (A or B), then again after the remaining descriptors (B or A respectively). At baseline patients were also asked if they had considered either EQVAS anchors. Results: Overall 106/151 (70%) participants changed their self-evaluation by ≥5 points on the 100 point VAS, with a mean (SD) change of +4.5 (12) points (p < 0.001). A total of 74/151 (49%) participants did not consider the best health VAS anchor, of the 77 who did 59 (77%) thought the good health descriptors were more extreme (better) then they had previously considered. Similarly 85/151 (66%) participants did not consider the worst health anchor of the 66 who did 63 (95%) thought the poor health descriptors were more extreme (worse) then they had previously considered. Conclusions: Health state self-reports may not be well considered. An immediate significant shift in response can be elicited by exposure to a mere description of an extreme health state despite no actual change in underlying health state occurring. Caution should be exercised in research and clinical settings when interpreting subjective patient reported outcomes that are dependent on brief anchors for meaning. Trial Registration: Australian and New Zealand Clinical Trials Registry (#ACTRN12607000606482) http://www.anzctr. org.au
Resumo:
Background: Assessments of change in subjective patient reported outcomes such as health-related quality of life (HRQoL) are a key component of many clinical and research evaluations. However, conventional longitudinal evaluation of change may not agree with patient perceived change if patients' understanding of the subjective construct under evaluation changes over time (response shift) or if patients' have inaccurate recollection (recall bias). This study examined whether older adults' perception of change is in agreement with conventional longitudinal evaluation of change in their HRQoL over the duration of their hospital stay. It also investigated this level of agreement after adjusting patient perceived change for recall bias that patients may have experienced. Methods: A prospective longitudinal cohort design nested within a larger randomised controlled trial was implemented. 103 hospitalised older adults participated in this investigation at a tertiary hospital facility. The EQ-5D utility and Visual Analogue Scale (VAS) scores were used to evaluate HRQoL. Participants completed EQ-5D reports as soon as they were medically stable (within three days of admission) then again immediately prior to discharge. Three methods of change score calculation were used (conventional change, patient perceived change and patient perceived change adjusted for recall bias). Agreement was primarily investigated using intraclass correlation coefficients (ICC) and limits of agreement. Results: Overall 101 (98%) participants completed both admission and discharge assessments. The mean (SD) age was 73.3 (11.2). The median (IQR) length of stay was 38 (20-60) days. For agreement between conventional longitudinal change and patient perceived change: ICCs were 0.34 and 0.40 for EQ-5D utility and VAS respectively. For agreement between conventional longitudinal change and patient perceived change adjusted for recall bias: ICCs were 0.98 and 0.90 respectively. Discrepancy between conventional longitudinal change and patient perceived change was considered clinically meaningful for 84 (83.2%) of participants, after adjusting for recall bias this reduced to 8 (7.9%). Conclusions: Agreement between conventional change and patient perceived change was not strong. A large proportion of this disagreement could be attributed to recall bias. To overcome the invalidating effect of response shift (on conventional change) and recall bias (on patient perceived change) a method of adjusting patient perceived change for recall bias has been described.
Resumo:
For several reasons, the Fourier phase domain is less favored than the magnitude domain in signal processing and modeling of speech. To correctly analyze the phase, several factors must be considered and compensated, including the effect of the step size, windowing function and other processing parameters. Building on a review of these factors, this paper investigates a spectral representation based on the Instantaneous Frequency Deviation, but in which the step size between processing frames is used in calculating phase changes, rather than the traditional single sample interval. Reflecting these longer intervals, the term delta-phase spectrum is used to distinguish this from instantaneous derivatives. Experiments show that mel-frequency cepstral coefficients features derived from the delta-phase spectrum (termed Mel-Frequency delta-phase features) can produce broadly similar performance to equivalent magnitude domain features for both voice activity detection and speaker recognition tasks. Further, it is shown that the fusion of the magnitude and phase representations yields performance benefits over either in isolation.