972 resultados para Single layer


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the ultrafast dynamics of non-thermal electron relaxation in graphene upon impulsive excitation. The 10-fs resolution two color pump-probe allows us to unveil the nonequilibrium electron gas decay at early times. © OSA 2012.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optically pumped ultrafast vertical external cavity surface emitting lasers (VECSELs), also referred to as semiconductor disk lasers (SDLs), are very attractive sources for ps- and fs-pulses in the near infrared [1]. So far VECSELs have been passively modelocked with semiconductor saturable absorber mirrors (SESAMs, [2]). Graphene has emerged as a promising saturable absorber (SA) for a variety of applications [3-5], since it offers an almost unlimited bandwidth and a fast recovery time [3-5]. A number of different laser types and gain materials have been modelocked with graphene SAs [3-4], including fiber [5] and solid-state bulk lasers [6-7]. Ultrafast VECSELs are based on a high-Q cavity, which requires very low-loss SAs compared to other lasers (e.g., fiber lasers). Here we develop a single-layer graphene saturable absorber mirror (GSAM) and use it to passively modelock a VECSEL. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The impulsive optical excitation of carriers in graphene creates an out-of-equilibrium distribution, which thermalizes on an ultrafast timescale [1-4]. This hot Fermi-Dirac (FD) distribution subsequently cools via phonon emission within few hundreds of femtoseconds. While the relaxation mechanisms mediated by phonons have been extensively investigated, the initial stages, ruled by fundamental electron-electron (e-e) interactions still pose a challenge. © 2013 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Field emission (FE) from a single-layer ultra-thin semiconductor film cathode (SUSC) on a metal substrate has been investigated theoretically. The self-consistent quantum FE model is developed by synthetically considering the energy band bending and electron scattering. As a typical example, we calculate the FE properties of ultra-thin A1N film with an adjustable film thickness from 1 to 10 nm. The calculated results show that the FE characteristic is evidently modulated by varying the film thickness, and there is an optimum thickness of about 3 nm. Furthermore, a four-step FE mechanism is suggested such that the distinct FE current of a SUSC is rooted in the thickness sensitivity of its quantum structure, and the optimum FE properties of the SUSC should be attributed to the change in the effective potential combined with the attenuation of electron scattering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Contacting mode atomic force microscopy (AFM) is used to measure the In0.asGao.65As/GaAs epilayer grown at low temperature (460°C). Unlike the normal layer-by-layer growth (FvdM mode) or self-organized islands growth (SK mode) ,samples grown under 460 C are found to be large islands with atomic thick terraces. AFM measurements reveale near one monolayer high steps. This kind of growth is good between FvdM and SK growth modes and can be used to understand the evolution of strained epitaxy from FvdM to SK mode.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We realized an organic electrical memory device with a simple structure based on single-layer pentacene film embedded between Al and ITO electrodes. The optimization of the thickness and deposition rate of pentacene resulted in a reliable device with an on/off current ratio as high as nearly 10(6), which was two orders of magnitude higher than previous results, and the storage time was more than 576 h. The current transition process is attributed to the formation and damage of the Interface dipole at different electric fields, in which the current conduction showed a transition from ohmic conductive current to Fowler-Nordheim tunneling current. After the transition from ON- to OFF-state, the device tended to remain in the OFF-State even when the applied voltage was removed, which indicated that the device was very promising for write-once read-many-times memory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrated in this paper an electrospinning technique could be employed to prepare the single layer macroporous films and fibrous networks of poly(vinyl alcohol) (PVA). A crucial element using electrospinning on the development of these electrospun structures was to shorten the distance of from the needle tip to the collector (L), which resulted in the bond of the wet fibers deposited on the collector at the junctions. The morphologies and average pore size of electrospun structures of PVA were mainly predominated by L and the time of collecting wet fibers on the collector. In addition, experimental results showed that an increase of the PVA concentration or a decrease of the applied voltage could also diminish slightly the average pore size of electrospun productions. Furthermore, a 60 degrees C absolute ethanol soak to PVA electrospun production led them to be able to stabilize in water for 1 month against disintegration. Differential scanning calorimetry (DSC) demonstrated that the 60 degrees C ethanol soak enhanced the degree of crystallinity of PVA production. The structural characteristic of macroporous films and networks in combination with their easy processability suggests potential utility in issue engineering applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we study the effects of electrical annealing at different voltages on the performance of organic light-emitting diodes. The light-emitting diodes studied here are single-layer devices based on a conjugated dendrimer doped with 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole as the emissive layer. We find that these devices can be annealed electrically by applying a voltage. This process reduces the turn-on voltage and enhances the brightness and efficiency. We obtained an external electroluminescence quantum efficiency of 0.07% photon/electron and a brightness of 2900 cd m(-2) after 12.4 V electrical annealing, which are about 6 times and 9 times higher than un-annealing devices, respectively. The improved luminance and efficiency are attributed to the presence of a space charge field near the electrodes caused by charging of traps.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the learning of a wide class of single-hidden-layer feedforward neural networks (SLFNs) with two sets of adjustable parameters, i.e., the nonlinear parameters in the hidden nodes and the linear output weights. The main objective is to both speed up the convergence of second-order learning algorithms such as Levenberg-Marquardt (LM), as well as to improve the network performance. This is achieved here by reducing the dimension of the solution space and by introducing a new Jacobian matrix. Unlike conventional supervised learning methods which optimize these two sets of parameters simultaneously, the linear output weights are first converted into dependent parameters, thereby removing the need for their explicit computation. Consequently, the neural network (NN) learning is performed over a solution space of reduced dimension. A new Jacobian matrix is then proposed for use with the popular second-order learning methods in order to achieve a more accurate approximation of the cost function. The efficacy of the proposed method is shown through an analysis of the computational complexity and by presenting simulation results from four different examples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A single layer, frequency selective surface based, sub-millimeter wave transmission polarizer is presented that converts incident slant linear 45° polarization into circular polarization upon transmission. The polarization convertor consists of a 30 mm diameter 10 thick silicon reinforced metalized screen containing 2700 resonator cells and perforated with nested split ring slot apertures. The screen was designed and optimized using CST Microwave Studio and predictions were validated experimentally by transmission measurements over the 250-365 GHz frequency range. This frequency range is used for remote environmental monitoring and 325 GHz represents a molecular emission line for H2O. The results obtained show good agreement between measured and modeled predictions. The measured 3 dB axial ratio bandwidth was 11.75%, measured minimum Axial Ratio was 0.19 dB and the measured insertion loss of the single layer screen was 3.38 dB