912 resultados para Sewing machines
Resumo:
Incorporating engineering concepts into middle school curriculum is seen as an effective way to improve students’ problem-solving skills. A selection of findings is reported from a science, technology, engineering and mathematics (STEM)-based unit in which students in the second year (grade 8) of a three-year longitudinal study explored engineering concepts and principles pertaining to the functioning of simple machines. The culminating activity, the focus of this paper, required the students to design, construct, test, and evaluate a trebuchet catapult. We consider findings from one of the schools, a co-educational school, where we traced the design process developments of four student groups from two classes. The students’ descriptions and explanations of the simple machines used in their catapult design are examined, together with how they rated various aspects of their engineering designs. Included in the findings are students’ understanding of how their simple machines were simulated by the resources supplied and how the machines interacted in forming a complex machine. An ability to link physical materials with abstract concepts and an awareness of design constraints on their constructions were apparent, although a desire to create a ‘‘perfect’’ catapult despite limitations in the physical materials rather than a prototype for testing concepts was evident. Feedback from teacher interviews added further insights into the students’ developments as well as the teachers’ professional learning. An evolving framework for introducing engineering education in the pre-secondary years is proposed.
Resumo:
Gambling activities and the revenues derived have been seen as a way to increase economic development in deprived areas. There are also, however, concerns about the effects of gambling in general and electronic gaming machines (EGMs) in particular, on the resources available to the localities in which they are situated. This paper focuses on the factors that determine the extent and spending of community benefit-related EGM-generated resources within Victoria, Australia, focusing in particular on the relationships between EGM activity and socio-economic and social capital indicators, and how this relates to the community benefit resources generated by gaming.
Resumo:
Background Extracorporeal membrane oxygenation (ECMO) is used for severe lung and/or heart failure in intensive care units (ICU). The Prince Charles Hospital (TPCH) has one of the largest ECMO units in Australia. Its use rapidly increased during the H1N1 (“swine flu”) pandemic and an increase in pedal complications resulted. The relationship between ECMO and pedal complications has been described, particularly in children, though no strong data exists. This paper presents a case series of foot complications in patients having received ECMO treatment. Methods We present nine cases of severe foot complications resulting from patients receiving ECMO treatment at TPCH in 2009–2012. Results Case ages ranged from 16 - 58 years and three were male. Six cases had an unremarkable medical history prior to H1N1 or H1N2 infection, one had Cardiomyopathy, one had received a lung transplant, and one had multi-organ failure post-sepsis. Common medications prescribed included vasopressors, antibiotics, and sedatives. All cases showed signs of markedly impaired peripheral perfusion whilst on ECMO and seven developed increasing areas of foot necrosis. Outcomes include two bilateral below knee amputations, two multiple digital amputations, one Reflex Sympathetic Dystrophy Syndrome, three pressure injuries, and three deaths. Conclusion Necrosis of the feet appears to occur more readily in younger people requiring ECMO treatment than others in ICU. The authors are conducting further studies to investigate associations between particular infections, medical history, medications, or machine techniques and severe foot complications. Some of these early results will also be presented at this conference.
Resumo:
To enhance the performance of the k-nearest neighbors approach in forecasting short-term traffic volume, this paper proposed and tested a two-step approach with the ability of forecasting multiple steps. In selecting k-nearest neighbors, a time constraint window is introduced, and then local minima of the distances between the state vectors are ranked to avoid overlappings among candidates. Moreover, to control extreme values’ undesirable impact, a novel algorithm with attractive analytical features is developed based on the principle component. The enhanced KNN method has been evaluated using the field data, and our comparison analysis shows that it outperformed the competing algorithms in most cases.
Resumo:
Live migration of multiple Virtual Machines (VMs) has become an indispensible management activity in datacenters for application performance, load balancing, server consolidation. While state-of-the-art live VM migration strategies focus on the improvement of the migration performance of a single VM, little attention has been given to the case of multiple VMs migration. Moreover, existing works on live VM migration ignore the inter-VM dependencies, and underlying network topology and its bandwidth. Different sequences of migration and different allocations of bandwidth result in different total migration times and total migration downtimes. This paper concentrates on developing a multiple VMs migration scheduling algorithm such that the performance of migration is maximized. We evaluate our proposed algorithm through simulation. The simulation results show that our proposed algorithm can migrate multiple VMs on any datacenter with minimum total migration time and total migration downtime.
Resumo:
In this paper, a novel data-driven approach to monitoring of systems operating under variable operating conditions is described. The method is based on characterizing the degradation process via a set of operation-specific hidden Markov models (HMMs), whose hidden states represent the unobservable degradation states of the monitored system while its observable symbols represent the sensor readings. Using the HMM framework, modeling, identification and monitoring methods are detailed that allow one to identify a HMM of degradation for each operation from mixed-operation data and perform operation-specific monitoring of the system. Using a large data set provided by a major manufacturer, the new methods are applied to a semiconductor manufacturing process running multiple operations in a production environment.
Resumo:
Live migration of multiple Virtual Machines (VMs) has become an integral management activity in data centers for power saving, load balancing and system maintenance. While state-of-the-art live migration techniques focus on the improvement of migration performance of an independent single VM, only a little has been investigated to the case of live migration of multiple interacting VMs. Live migration is mostly influenced by the network bandwidth and arbitrarily migrating a VM which has data inter-dependencies with other VMs may increase the bandwidth consumption and adversely affect the performances of subsequent migrations. In this paper, we propose a Random Key Genetic Algorithm (RKGA) that efficiently schedules the migration of a given set of VMs accounting both inter-VM dependency and data center communication network. The experimental results show that the RKGA can schedule the migration of multiple VMs with significantly shorter total migration time and total downtime compared to a heuristic algorithm.
Resumo:
Calls from 14 species of bat were classified to genus and species using discriminant function analysis (DFA), support vector machines (SVM) and ensembles of neural networks (ENN). Both SVMs and ENNs outperformed DFA for every species while ENNs (mean identification rate – 97%) consistently outperformed SVMs (mean identification rate – 87%). Correct classification rates produced by the ENNs varied from 91% to 100%; calls from six species were correctly identified with 100% accuracy. Calls from the five species of Myotis, a genus whose species are considered difficult to distinguish acoustically, had correct identification rates that varied from 91 – 100%. Five parameters were most important for classifying calls correctly while seven others contributed little to classification performance.
Resumo:
This paper proposes a highly reliable fault diagnosis approach for low-speed bearings. The proposed approach first extracts wavelet-based fault features that represent diverse symptoms of multiple low-speed bearing defects. The most useful fault features for diagnosis are then selected by utilizing a genetic algorithm (GA)-based kernel discriminative feature analysis cooperating with one-against-all multicategory support vector machines (OAA MCSVMs). Finally, each support vector machine is individually trained with its own feature vector that includes the most discriminative fault features, offering the highest classification performance. In this study, the effectiveness of the proposed GA-based kernel discriminative feature analysis and the classification ability of individually trained OAA MCSVMs are addressed in terms of average classification accuracy. In addition, the proposedGA- based kernel discriminative feature analysis is compared with four other state-of-the-art feature analysis approaches. Experimental results indicate that the proposed approach is superior to other feature analysis methodologies, yielding an average classification accuracy of 98.06% and 94.49% under rotational speeds of 50 revolutions-per-minute (RPM) and 80 RPM, respectively. Furthermore, the individually trained MCSVMs with their own optimal fault features based on the proposed GA-based kernel discriminative feature analysis outperform the standard OAA MCSVMs, showing an average accuracy of 98.66% and 95.01% for bearings under rotational speeds of 50 RPM and 80 RPM, respectively.
Resumo:
The increase in data center dependent services has made energy optimization of data centers one of the most exigent challenges in today's Information Age. The necessity of green and energy-efficient measures is very high for reducing carbon footprint and exorbitant energy costs. However, inefficient application management of data centers results in high energy consumption and low resource utilization efficiency. Unfortunately, in most cases, deploying an energy-efficient application management solution inevitably degrades the resource utilization efficiency of the data centers. To address this problem, a Penalty-based Genetic Algorithm (GA) is presented in this paper to solve a defined profile-based application assignment problem whilst maintaining a trade-off between the power consumption performance and resource utilization performance. Case studies show that the penalty-based GA is highly scalable and provides 16% to 32% better solutions than a greedy algorithm.
Resumo:
Although live VM migration has been intensively studied, the problem of live migration of multiple interdependent VMs has hardly been investigated. The most important problem in the live migration of multiple interdependent VMs is how to schedule VM migrations as the schedule will directly affect the total migration time and the total downtime of those VMs. Aiming at minimizing both the total migration time and the total downtime simultaneously, this paper presents a Strength Pareto Evolutionary Algorithm 2 (SPEA2) for the multi-VM migration scheduling problem. The SPEA2 has been evaluated by experiments, and the experimental results show that the SPEA2 can generate a set of VM migration schedules with a shorter total migration time and a shorter total downtime than an existing genetic algorithm, namely Random Key Genetic Algorithm (RKGA). This paper also studies the scalability of the SPEA2.
Resumo:
This paper presents the programming an FPGA (Field Programmable Gate Array) to emulate the dynamics of DC machines. FPGA allows high speed real time simulation with high precision. The described design includes block diagram representation of DC machine, which contain all arithmetic and logical operations. The real time simulation of the machine in FPGA is controlled by user interfaces they are Keypad interface, LCD display on-line and digital to analog converter. This approach provides emulation of electrical machine by changing the parameters. Separately Exited DC machine implemented and experimental results are presented.
Resumo:
This paper presents real-time simulation models of electrical machines on FPGA platform. Implementation of the real-time numerical integration methods with digital logic elements is discussed. Several numerical integrations are presented. A real-time simulation of DC machine is carried out on this FPGA platform and important transient results are presented. These results are compared to simulation results obtained through a commercial off-line simulation software.
Resumo:
Being able to accurately predict the risk of falling is crucial in patients with Parkinson’s dis- ease (PD). This is due to the unfavorable effect of falls, which can lower the quality of life as well as directly impact on survival. Three methods considered for predicting falls are decision trees (DT), Bayesian networks (BN), and support vector machines (SVM). Data on a 1-year prospective study conducted at IHBI, Australia, for 51 people with PD are used. Data processing are conducted using rpart and e1071 packages in R for DT and SVM, con- secutively; and Bayes Server 5.5 for the BN. The results show that BN and SVM produce consistently higher accuracy over the 12 months evaluation time points (average sensitivity and specificity > 92%) than DT (average sensitivity 88%, average specificity 72%). DT is prone to imbalanced data so needs to adjust for the misclassification cost. However, DT provides a straightforward, interpretable result and thus is appealing for helping to identify important items related to falls and to generate fallers’ profiles.