975 resultados para Scheduling Systems
Resumo:
Most commercial project management software packages include planning methods to devise schedules for resource-constrained projects. As it is proprietary information of the software vendors which planning methods are implemented, the question arises how the software packages differ in quality with respect to their resource-allocation capabilities. We experimentally evaluate the resource-allocation capabilities of eight recent software packages by using 1,560 instances with 30, 60, and 120 activities of the well-known PSPLIB library. In some of the analyzed packages, the user may influence the resource allocation by means of multi-level priority rules, whereas in other packages, only few options can be chosen. We study the impact of various complexity parameters and priority rules on the project duration obtained by the software packages. The results indicate that the resource-allocation capabilities of these packages differ significantly. In general, the relative gap between the packages gets larger with increasing resource scarcity and with increasing number of activities. Moreover, the selection of the priority rule has a considerable impact on the project duration. Surprisingly, when selecting a priority rule in the packages where it is possible, both the mean and the variance of the project duration are in general worse than for the packages which do not offer the selection of a priority rule.
Resumo:
Energy management has always been recognized as a challenge in mobile systems, especially in modern OS-based mobile systems where multi-functioning are widely supported. Nowadays, it is common for a mobile system user to run multiple applications simultaneously while having a target battery lifetime in mind for a specific application. Traditional OS-level power management (PM) policies make their best effort to save energy under performance constraint, but fail to guarantee a target lifetime, leaving the painful trading off between the total performance of applications and the target lifetime to the user itself. This thesis provides a new way to deal with the problem. It is advocated that a strong energy-aware PM scheme should first guarantee a user-specified battery lifetime to a target application by restricting the average power of those less important applications, and in addition to that, maximize the total performance of applications without harming the lifetime guarantee. As a support, energy, instead of CPU or transmission bandwidth, should be globally managed as the first-class resource by the OS. As the first-stage work of a complete PM scheme, this thesis presents the energy-based fair queuing scheduling, a novel class of energy-aware scheduling algorithms which, in combination with a mechanism of battery discharge rate restricting, systematically manage energy as the first-class resource with the objective of guaranteeing a user-specified battery lifetime for a target application in OS-based mobile systems. Energy-based fair queuing is a cross-application of the traditional fair queuing in the energy management domain. It assigns a power share to each task, and manages energy by proportionally serving energy to tasks according to their assigned power shares. The proportional energy use establishes proportional share of the system power among tasks, which guarantees a minimum power for each task and thus, avoids energy starvation on any task. Energy-based fair queuing treats all tasks equally as one type and supports periodical time-sensitive tasks by allocating each of them a share of system power that is adequate to meet the highest energy demand in all periods. However, an overly conservative power share is usually required to guarantee the meeting of all time constraints. To provide more effective and flexible support for various types of time-sensitive tasks in general purpose operating systems, an extra real-time friendly mechanism is introduced to combine priority-based scheduling into the energy-based fair queuing. Since a method is available to control the maximum time one time-sensitive task can run with priority, the power control and time-constraint meeting can be flexibly traded off. A SystemC-based test-bench is designed to assess the algorithms. Simulation results show the success of the energy-based fair queuing in achieving proportional energy use, time-constraint meeting, and a proper trading off between them. La gestión de energía en los sistema móviles está considerada hoy en día como un reto fundamental, notándose, especialmente, en aquellos terminales que utilizando un sistema operativo implementan múltiples funciones. Es común en los sistemas móviles actuales ejecutar simultaneamente diferentes aplicaciones y tener, para una de ellas, un objetivo de tiempo de uso de la batería. Tradicionalmente, las políticas de gestión de consumo de potencia de los sistemas operativos hacen lo que está en sus manos para ahorrar energía y satisfacer sus requisitos de prestaciones, pero no son capaces de proporcionar un objetivo de tiempo de utilización del sistema, dejando al usuario la difícil tarea de buscar un compromiso entre prestaciones y tiempo de utilización del sistema. Esta tesis, como contribución, proporciona una nueva manera de afrontar el problema. En ella se establece que un esquema de gestión de consumo de energía debería, en primer lugar, garantizar, para una aplicación dada, un tiempo mínimo de utilización de la batería que estuviera especificado por el usuario, restringiendo la potencia media consumida por las aplicaciones que se puedan considerar menos importantes y, en segundo lugar, maximizar las prestaciones globales sin comprometer la garantía de utilización de la batería. Como soporte de lo anterior, la energía, en lugar del tiempo de CPU o el ancho de banda, debería gestionarse globalmente por el sistema operativo como recurso de primera clase. Como primera fase en el desarrollo completo de un esquema de gestión de consumo, esta tesis presenta un algoritmo de planificación de encolado equitativo (fair queueing) basado en el consumo de energía, es decir, una nueva clase de algoritmos de planificación que, en combinación con mecanismos que restrinjan la tasa de descarga de una batería, gestionen de forma sistemática la energía como recurso de primera clase, con el objetivo de garantizar, para una aplicación dada, un tiempo de uso de la batería, definido por el usuario, en sistemas móviles empotrados. El encolado equitativo de energía es una extensión al dominio de la energía del encolado equitativo tradicional. Esta clase de algoritmos asigna una reserva de potencia a cada tarea y gestiona la energía sirviéndola de manera proporcional a su reserva. Este uso proporcional de la energía garantiza que cada tarea reciba una porción de potencia y evita que haya tareas que se vean privadas de recibir energía por otras con un comportamiento más ambicioso. Esta clase de algoritmos trata a todas las tareas por igual y puede planificar tareas periódicas en tiempo real asignando a cada una de ellas una reserva de potencia que es adecuada para proporcionar la mayor de las cantidades de energía demandadas por período. Sin embargo, es posible demostrar que sólo se consigue cumplir con los requisitos impuestos por todos los plazos temporales con reservas de potencia extremadamente conservadoras. En esta tesis, para proporcionar un soporte más flexible y eficiente para diferentes tipos de tareas de tiempo real junto con el resto de tareas, se combina un mecanismo de planificación basado en prioridades con el encolado equitativo basado en energía. En esta clase de algoritmos, gracias al método introducido, que controla el tiempo que se ejecuta con prioridad una tarea de tiempo real, se puede establecer un compromiso entre el cumplimiento de los requisitos de tiempo real y el consumo de potencia. Para evaluar los algoritmos, se ha diseñado en SystemC un banco de pruebas. Los resultados muestran que el algoritmo de encolado equitativo basado en el consumo de energía consigue el balance entre el uso proporcional a la energía reservada y el cumplimiento de los requisitos de tiempo real.
Resumo:
Los dispositivos móviles modernos disponen cada vez de más funcionalidad debido al rápido avance de las tecnologías de las comunicaciones y computaciones móviles. Sin embargo, la capacidad de la batería no ha experimentado un aumento equivalente. Por ello, la experiencia de usuario en los sistemas móviles modernos se ve muy afectada por la vida de la batería, que es un factor inestable de difícil de control. Para abordar este problema, investigaciones anteriores han propuesto un esquema de gestion del consumo (PM) centrada en la energía y que proporciona una garantía sobre la vida operativa de la batería mediante la gestión de la energía como un recurso de primera clase en el sistema. Como el planificador juega un papel fundamental en la administración del consumo de energía y en la garantía del rendimiento de las aplicaciones, esta tesis explora la optimización de la experiencia de usuario para sistemas móviles con energía limitada desde la perspectiva de un planificador que tiene en cuenta el consumo de energía en un contexto en el que ésta es un recurso de primera clase. En esta tesis se analiza en primer lugar los factores que contribuyen de forma general a la experiencia de usuario en un sistema móvil. Después se determinan los requisitos esenciales que afectan a la experiencia de usuario en la planificación centrada en el consumo de energía, que son el reparto proporcional de la potencia, el cumplimiento de las restricciones temporales, y cuando sea necesario, el compromiso entre la cuota de potencia y las restricciones temporales. Para cumplir con los requisitos, el algoritmo clásico de fair queueing y su modelo de referencia se extienden desde los dominios de las comunicaciones y ancho de banda de CPU hacia el dominio de la energía, y en base a ésto, se propone el algoritmo energy-based fair queueing (EFQ) para proporcionar una planificación basada en la energía. El algoritmo EFQ está diseñado para compartir la potencia consumida entre las tareas mediante su planificación en función de la energía consumida y de la cuota reservada. La cuota de consumo de cada tarea con restricciones temporales está protegida frente a diversos cambios que puedan ocurrir en el sistema. Además, para dar mejor soporte a las tareas en tiempo real y multimedia, se propone un mecanismo para combinar con el algoritmo EFQ para dar preferencia en la planificación durante breves intervalos de tiempo a las tareas más urgentes con restricciones temporales.Las propiedades del algoritmo EFQ se evaluan a través del modelado de alto nivel y la simulación. Los resultados de las simulaciones indican que los requisitos esenciales de la planificación centrada en la energía pueden lograrse. El algoritmo EFQ se implementa más tarde en el kernel de Linux. Para evaluar las propiedades del planificador EFQ basado en Linux, se desarrolló un banco de pruebas experimental basado en una sitema empotrado, un programa de banco de pruebas multihilo, y un conjunto de pruebas de código abierto. A través de experimentos específicamente diseñados, esta tesis verifica primero las propiedades de EFQ en la gestión de la cuota de consumo de potencia y la planificación en tiempo real y, a continuación, explora los beneficios potenciales de emplear la planificación EFQ en la optimización de la experiencia de usuario para sistemas móviles con energía limitada. Los resultados experimentales sobre la gestión de la cuota de energía muestran que EFQ es más eficaz que el planificador de Linux-CFS en la gestión de energía, logrando un reparto proporcional de la energía del sistema independientemente de en qué dispositivo se consume la energía. Los resultados experimentales en la planificación en tiempo real demuestran que EFQ puede lograr de forma eficaz, flexible y robusta el cumplimiento de las restricciones temporales aunque se dé el caso de aumento del el número de tareas o del error en la estimación de energía. Por último, un análisis comparativo de los resultados experimentales sobre la optimización de la experiencia del usuario demuestra que, primero, EFQ es más eficaz y flexible que los algoritmos tradicionales de planificación del procesador, como el que se encuentra por defecto en el planificador de Linux y, segundo, que proporciona la posibilidad de optimizar y preservar la experiencia de usuario para los sistemas móviles con energía limitada. Abstract Modern mobiledevices have been becoming increasingly powerful in functionality and entertainment as the next-generation mobile computing and communication technologies are rapidly advanced. However, the battery capacity has not experienced anequivalent increase. The user experience of modern mobile systems is therefore greatly affected by the battery lifetime,which is an unstable factor that is hard to control. To address this problem, previous works proposed energy-centric power management (PM) schemes to provide strong guarantee on the battery lifetime by globally managing energy as the first-class resource in the system. As the processor scheduler plays a pivotal role in power management and application performance guarantee, this thesis explores the user experience optimization of energy-limited mobile systemsfrom the perspective of energy-centric processor scheduling in an energy-centric context. This thesis first analyzes the general contributing factors of the mobile system user experience.Then itdetermines the essential requirements on the energy-centric processor scheduling for user experience optimization, which are proportional power sharing, time-constraint compliance, and when necessary, a tradeoff between the power share and the time-constraint compliance. To meet the requirements, the classical fair queuing algorithm and its reference model are extended from the network and CPU bandwidth sharing domain to the energy sharing domain, and based on that, the energy-based fair queuing (EFQ) algorithm is proposed for performing energy-centric processor scheduling. The EFQ algorithm is designed to provide proportional power shares to tasks by scheduling the tasks based on their energy consumption and weights. The power share of each time-sensitive task is protected upon the change of the scheduling environment to guarantee a stable performance, and any instantaneous power share that is overly allocated to one time-sensitive task can be fairly re-allocated to the other tasks. In addition, to better support real-time and multimedia scheduling, certain real-time friendly mechanism is combined into the EFQ algorithm to give time-limited scheduling preference to the time-sensitive tasks. Through high-level modelling and simulation, the properties of the EFQ algorithm are evaluated. The simulation results indicate that the essential requirements of energy-centric processor scheduling can be achieved. The EFQ algorithm is later implemented in the Linux kernel. To assess the properties of the Linux-based EFQ scheduler, an experimental test-bench based on an embedded platform, a multithreading test-bench program, and an open-source benchmark suite is developed. Through specifically-designed experiments, this thesis first verifies the properties of EFQ in power share management and real-time scheduling, and then, explores the potential benefits of employing EFQ scheduling in the user experience optimization for energy-limited mobile systems. Experimental results on power share management show that EFQ is more effective than the Linux-CFS scheduler in managing power shares and it can achieve a proportional sharing of the system power regardless of on which device the energy is spent. Experimental results on real-time scheduling demonstrate that EFQ can achieve effective, flexible and robust time-constraint compliance upon the increase of energy estimation error and task number. Finally, a comparative analysis of the experimental results on user experience optimization demonstrates that EFQ is more effective and flexible than traditional processor scheduling algorithms, such as those of the default Linux scheduler, in optimizing and preserving the user experience of energy-limited mobile systems.
Resumo:
Includes bibliographical references.
Resumo:
"UIUCDCS-R-75-724"
Resumo:
Vita.
Resumo:
The widespread implementation of Manufacturing Resource Planning (MRPII) systems in this country and abroad and the reported dissatisfaction with their use formed the initial basis of this piece of research which concentrates on the fundamental theory and design of the Closed Loop MRPII system itself. The dissertation concentrates on two key aspects namely; how Master Production Scheduling is carried out in differing business environments and how well the `closing of the loop' operates by checking the capcity requirements of the different levels of plans within an organisation. The main hypothesis which is tested is that in U.K. manufacturing industry, resource checks are either not being carried out satisfactorily or they are not being fed back to the appropriate plan in a timely fashion. The research methodology employed involved initial detailed investigations into Master Scheduling and capacity planning in eight diverse manufacturing companies. This was followed by a nationwide survey of users in 349 companies, a survey of all the major suppliers of Production Management software in the U.K. and an analysis of the facilities offered by current software packages. The main conclusion which is drawn is that the hypothesis is proved in the majority of companies in that only just over 50% of companies are attempting Resource and Capacity Planning and only 20% are successfully feeding back CRP information to `close the loop'. Various causative factors are put forward and remedies are suggested.
Resumo:
Computational performance increasingly depends on parallelism, and many systems rely on heterogeneous resources such as GPUs and FPGAs to accelerate computationally intensive applications. However, implementations for such heterogeneous systems are often hand-crafted and optimised to one computation scenario, and it can be challenging to maintain high performance when application parameters change. In this paper, we demonstrate that machine learning can help to dynamically choose parameters for task scheduling and load-balancing based on changing characteristics of the incoming workload. We use a financial option pricing application as a case study. We propose a simulation of processing financial tasks on a heterogeneous system with GPUs and FPGAs, and show how dynamic, on-line optimisations could improve such a system. We compare on-line and batch processing algorithms, and we also consider cases with no dynamic optimisations.
Resumo:
In this paper a new approach to the resource allocation and scheduling mechanism that reflects the effect of user's Quality of Experience is presented. The proposed scheduling algorithm is examined in the context of 3GPP Long Term Evolution (LTE) system. Pause Intensity (PI) as an objective and no-reference quality assessment metric is employed to represent user's satisfaction in the scheduler of eNodeB. PI is in fact a measurement of discontinuity in the service. The performance of the scheduling method proposed is compared with two extreme cases: maxCI and Round Robin scheduling schemes which correspond to the efficiency and fairness oriented mechanisms, respectively. Our work reveals that the proposed method is able to perform between fairness and efficiency requirements, in favor of higher satisfaction for the users to the desired level. © VDE VERLAG GMBH.
Resumo:
This dissertation presents and evaluates a methodology for scheduling medical application workloads in virtualized computing environments. Such environments are being widely adopted by providers of "cloud computing" services. In the context of provisioning resources for medical applications, such environments allow users to deploy applications on distributed computing resources while keeping their data secure. Furthermore, higher level services that further abstract the infrastructure-related issues can be built on top of such infrastructures. For example, a medical imaging service can allow medical professionals to process their data in the cloud, easing them from the burden of having to deploy and manage these resources themselves. In this work, we focus on issues related to scheduling scientific workloads on virtualized environments. We build upon the knowledge base of traditional parallel job scheduling to address the specific case of medical applications while harnessing the benefits afforded by virtualization technology. To this end, we provide the following contributions: (1) An in-depth analysis of the execution characteristics of the target applications when run in virtualized environments. (2) A performance prediction methodology applicable to the target environment. (3) A scheduling algorithm that harnesses application knowledge and virtualization-related benefits to provide strong scheduling performance and quality of service guarantees. In the process of addressing these pertinent issues for our target user base (i.e. medical professionals and researchers), we provide insight that benefits a large community of scientific application users in industry and academia. Our execution time prediction and scheduling methodologies are implemented and evaluated on a real system running popular scientific applications. We find that we are able to predict the execution time of a number of these applications with an average error of 15%. Our scheduling methodology, which is tested with medical image processing workloads, is compared to that of two baseline scheduling solutions and we find that it outperforms them in terms of both the number of jobs processed and resource utilization by 20–30%, without violating any deadlines. We conclude that our solution is a viable approach to supporting the computational needs of medical users, even if the cloud computing paradigm is not widely adopted in its current form.
Resumo:
Over the past few decades, we have been enjoying tremendous benefits thanks to the revolutionary advancement of computing systems, driven mainly by the remarkable semiconductor technology scaling and the increasingly complicated processor architecture. However, the exponentially increased transistor density has directly led to exponentially increased power consumption and dramatically elevated system temperature, which not only adversely impacts the system's cost, performance and reliability, but also increases the leakage and thus the overall power consumption. Today, the power and thermal issues have posed enormous challenges and threaten to slow down the continuous evolvement of computer technology. Effective power/thermal-aware design techniques are urgently demanded, at all design abstraction levels, from the circuit-level, the logic-level, to the architectural-level and the system-level. ^ In this dissertation, we present our research efforts to employ real-time scheduling techniques to solve the resource-constrained power/thermal-aware, design-optimization problems. In our research, we developed a set of simple yet accurate system-level models to capture the processor's thermal dynamic as well as the interdependency of leakage power consumption, temperature, and supply voltage. Based on these models, we investigated the fundamental principles in power/thermal-aware scheduling, and developed real-time scheduling techniques targeting at a variety of design objectives, including peak temperature minimization, overall energy reduction, and performance maximization. ^ The novelty of this work is that we integrate the cutting-edge research on power and thermal at the circuit and architectural-level into a set of accurate yet simplified system-level models, and are able to conduct system-level analysis and design based on these models. The theoretical study in this work serves as a solid foundation for the guidance of the power/thermal-aware scheduling algorithms development in practical computing systems.^
Resumo:
Large scale wind power generation complicated with restrictions on the tie line plans may lead to significant wind power curtailment and deep cycling of coal units during the valley load periods. This study proposes a dispatch strategy for interconnected wind-coal intensive power systems (WCISs). Wind power curtailment and cycling of coal units are included in the economic dispatch analysis of regional systems. Based on the day-ahead dispatch results, a tie line power plan adjustment strategy is implemented in the event of wind power curtailment or deep cycling occurring in the economic dispatch model, with the objective of reducing such effects. The dispatch strategy is designed based on the distinctive operation characteristics of interconnected WCISs, and dispatch results for regional systems in China show that the proposed strategy is feasible and can improve the overall system operation performance.
Resumo:
An optimal day-ahead scheduling method (ODSM) for the integrated urban energy system (IUES) is introduced, which considers the reconfigurable capability of an electric distribution network. The hourly topology of a distribution network, a natural gas network, the energy centers including the combined heat and power (CHP) units, different energy conversion devices and demand responsive loads (DRLs), are optimized to minimize the day-ahead operation cost of the IUES. The hourly reconfigurable capability of the electric distribution network utilizing remotely controlled switches (RCSs) is explored and discussed. The operational constraints from the unbalanced three-phase electric distribution network, the natural gas network, and the energy centers are considered. The interactions between the electric distribution network and the natural gas network take place through conversion of energy among different energy vectors in the energy centers. An energy conversion analysis model for the energy center was developed based on the energy hub model. A hybrid optimization method based on genetic algorithm (GA) and a nonlinear interior point method (IPM) is utilized to solve the ODSM model. Numerical studies demonstrate that the proposed ODSM is able to provide the IUES with an effective and economical day-ahead scheduling scheme and reduce the operational cost of the IUES.
Resumo:
Abstract. Two ideas taken from Bayesian optimization and classifier systems are presented for personnel scheduling based on choosing a suitable scheduling rule from a set for each person's assignment. Unlike our previous work of using genetic algorithms whose learning is implicit, the learning in both approaches is explicit, i.e. we are able to identify building blocks directly. To achieve this target, the Bayesian optimization algorithm builds a Bayesian network of the joint probability distribution of the rules used to construct solutions, while the adapted classifier system assigns each rule a strength value that is constantly updated according to its usefulness in the current situation. Computational results from 52 real data instances of nurse scheduling demonstrate the success of both approaches. It is also suggested that the learning mechanism in the proposed approaches might be suitable for other scheduling problems.
Resumo:
Abstract. Two ideas taken from Bayesian optimization and classifier systems are presented for personnel scheduling based on choosing a suitable scheduling rule from a set for each person's assignment. Unlike our previous work of using genetic algorithms whose learning is implicit, the learning in both approaches is explicit, i.e. we are able to identify building blocks directly. To achieve this target, the Bayesian optimization algorithm builds a Bayesian network of the joint probability distribution of the rules used to construct solutions, while the adapted classifier system assigns each rule a strength value that is constantly updated according to its usefulness in the current situation. Computational results from 52 real data instances of nurse scheduling demonstrate the success of both approaches. It is also suggested that the learning mechanism in the proposed approaches might be suitable for other scheduling problems.