'The application of Bayesian Optimization and Classifier Systems in Nurse Scheduling'


Autoria(s): Li, Jingpeng; Aickelin, Uwe
Data(s)

2004

Resumo

Abstract. Two ideas taken from Bayesian optimization and classifier systems are presented for personnel scheduling based on choosing a suitable scheduling rule from a set for each person's assignment. Unlike our previous work of using genetic algorithms whose learning is implicit, the learning in both approaches is explicit, i.e. we are able to identify building blocks directly. To achieve this target, the Bayesian optimization algorithm builds a Bayesian network of the joint probability distribution of the rules used to construct solutions, while the adapted classifier system assigns each rule a strength value that is constantly updated according to its usefulness in the current situation. Computational results from 52 real data instances of nurse scheduling demonstrate the success of both approaches. It is also suggested that the learning mechanism in the proposed approaches might be suitable for other scheduling problems.

Formato

application/pdf

Identificador

http://eprints.nottingham.ac.uk/620/1/04ppsn_boa.pdf

Li, Jingpeng and Aickelin, Uwe (2004) 'The application of Bayesian Optimization and Classifier Systems in Nurse Scheduling'. In: 8th International Conference on Parallel Problem Solving from Nature (PPSN VIII), LNCS 3242, 2004, Birmingham, UK.

Idioma(s)

en

Publicador

Springer-Verlag

Relação

http://eprints.nottingham.ac.uk/620/

Tipo

Conference or Workshop Item

PeerReviewed