861 resultados para Salt marshes.
Resumo:
"August 1974."
Resumo:
In this study we analyze the feeding ecology and trophic relationships of some of the main fish species (Soleidae, Moronidae, Mullidae, Sparidae, Mugilidae, and Batrachoididae) of the lower Estuary of the Guadiana River and the Castro Marim e Vila Real de Santo Antonio Salt Marsh. We examined the stomachs of 1415 fish caught monthly between September 2000 and August 2001. Feeding indices and coefficients were determined and used along with the results of multivariate analysis to develop diagrams of trophic interactions (food webs). Results show that these species are largely opportunistic predators. The most important prey items are amphipods, gobies (Gobiidae), shrimps (Palaemon serratus and Crangon crangon), and polychaete worms. The lower Estuary and associated salt marshes are important nurseries and feeding grounds for the species studied. In this area, it is therefore important to monitor the effects of changes in river runoff, nutrient input, and temperature that result from construction of the Alqueva Dam upstream. (c) 2006 Elsevier Ltd. All rights reserved.
Predicting invasion in grassland ecosystems: is exotic dominance the real embarrassment of richness?
Resumo:
Invasions have increased the size of regional species pools, but are typically assumed to reduce native diversity. However, global-scale tests of this assumption have been elusive because of the focus on exotic species richness, rather than relative abundance. This is problematic because low invader richness can indicate invasion resistance by the native community or, alternatively, dominance by a single exotic species. Here, we used a globally replicated study to quantify relationships between exotic richness and abundance in grass-dominated ecosystems in 13 countries on six continents, ranging from salt marshes to alpine tundra. We tested effects of human land use, native community diversity, herbivore pressure, and nutrient limitation on exotic plant dominance. Despite its widespread use, exotic richness was a poor proxy for exotic dominance at low exotic richness, because sites that contained few exotic species ranged from relatively pristine (low exotic richness and cover) to almost completely exotic-dominated ones (low exotic richness but high exotic cover). Both exotic cover and richness were predicted by native plant diversity (native grass richness) and land use (distance to cultivation). Although climate was important for predicting both exotic cover and richness, climatic factors predicting cover (precipitation variability) differed from those predicting richness (maximum temperature and mean temperature in the wettest quarter). Herbivory and nutrient limitation did not predict exotic richness or cover. Exotic dominance was greatest in areas with low native grass richness at the site- or regional-scale. Although this could reflect native grass displacement, a lack of biotic resistance is a more likely explanation, given that grasses comprise the most aggressive invaders. These findings underscore the need to move beyond richness as a surrogate for the extent of invasion, because this metric confounds monodominance with invasion resistance. Monitoring species' relative abundance will more rapidly advance our understanding of invasions.
Resumo:
We identify the 10 major terrestrial and marine ecosystems in Australia most vulnerable to tipping points, in which modest environmental changes can cause disproportionately large changes in ecosystem properties. To accomplish this we independently surveyed the coauthors of this paper to produce a list of candidate ecosystems, and then refined this list during a 2-day workshop. The list includes (1) elevationally restricted mountain ecosystems, (2) tropical savannas, (3) coastal floodplains and wetlands, (4) coral reefs, (5) drier rainforests, (6) wetlands and floodplains in the Murray-Darling Basin, (7) the Mediterranean ecosystems of southwestern Australia, (8) offshore islands, (9) temperate eucalypt forests, and (10) salt marshes and mangroves. Some of these ecosystems are vulnerable to widespread phase-changes that could fundamentally alter ecosystem properties such as habitat structure, species composition, fire regimes, or carbon storage. Others appear susceptible to major changes across only part of their geographic range, whereas yet others are susceptible to a large-scale decline of key biotic components, such as small mammals or stream-dwelling amphibians. For each ecosystem we consider the intrinsic features and external drivers that render it susceptible to tipping points, and identify subtypes of the ecosystem that we deem to be especially vulnerable. © 2011 Elsevier Ltd.
Resumo:
A study was conducted, in association with the Sapelo Island and North Carolina National Estuarine Research Reserves (NERRs), to evaluate the impacts of coastal development on sentinel habitats (e.g., tidal creek ecosystems), including potential impacts to human health and well-being. Uplands associated with southeastern tidal creeks and the salt marshes they drain are popular locations for building homes, resorts, and recreational facilities because of the high quality of life and mild climate associated with these environments. Tidal creeks form part of the estuarine ecosystem characterized by high biological productivity, great ecological value, complex environmental gradients, and numerous interconnected processes. This research combined a watershed-level study integrating ecological, public health and human dimension attributes with watershed-level land use data. The approach used for this research was based upon a comparative watershed and ecosystem approach that sampled tidal creek networks draining developed watersheds (e.g., suburban, urban, and industrial) as well as undeveloped sites. The primary objective of this work was to clearly define the relationships between coastal development with its concomitant land use changes and non-point source pollution loading and the ecological and human health and well-being status of tidal creek ecosystems. Nineteen tidal creek systems, located along the southeastern United States coast from southern North Carolina to southern Georgia, were sampled during summer (June-August), 2005 and 2006. Within each system, creeks were divided into two primary segments based upon tidal zoning: intertidal (i.e., shallow, narrow headwater sections) and subtidal (i.e., deeper and wider sections), and watersheds were delineated for each segment. In total, we report findings on 24 intertidal and 19 subtidal creeks. Indicators sampled throughout each creek included water quality (e.g., dissolved oxygen concentration, salinity, nutrients, chlorophyll-a levels), sediment quality (e.g., characteristics, contaminants levels including emerging contaminants), pathogen and viral indicators, and abundance and genetic responses of biological resources (e.g., macrobenthic and nektonic communities, shellfish tissue contaminants, oyster microarray responses). For many indicators, the intertidally-dominated or headwater portions of tidal creeks were found to respond differently than the subtidally-dominated or larger and deeper portions of tidal creeks. Study results indicate that the integrity and productivity of headwater tidal creeks were impaired by land use changes and associated non-point source pollution, suggesting these habitats are valuable early warning sentinels of ensuing ecological impacts and potential public health threats. For these headwater creeks, this research has assisted the validation of a previously developed conceptual model for the southeastern US region. This conceptual model identified adverse changes that generally occurred in the physical and chemical environment (e.g., water quality indicators such as indicator bacteria for sewage pollution or sediment chemical contamination) when impervious cover levels in the watershed reach 10-20%. Ecological characteristics responded and were generally impaired when impervious cover levels exceed 20-30%. Estimates of impervious cover levels defining where human uses are impaired are currently being determined, but it appears that shellfish bed closures and the flooding vulnerability of headwater regions become a concern when impervious cover values exceed 10-30%. This information can be used to forecast the impacts of changing land use patterns on tidal creek environmental quality as well as associated human health and well-being. In addition, this study applied tools and technologies that are adaptable, transferable, and repeatable among the high quality NERRS sites as comparable reference entities to other nearby developed coastal watersheds. The findings herein will be of value in addressing local, regional and national needs for understanding multiple stressor (anthropogenic and human impacts) effects upon estuarine ecosystems and response trends in ecosystem condition with changing coastal impacts (i.e., development, climate change). (PDF contaions 88 pages)
Resumo:
A malária é uma doença infecciosa causada por protozoários do gênero Plasmodium, transmitidos ao homem, principalmente, através da picada do mosquito infectado. O tratamento é realizado por meio do uso de drogas, como a cloroquina, uma vez que não há vacina eficiente contra a doença. Porém, a resistência dos parasitos aos medicamentos tem levado à busca por novas substâncias com atividade antimalárica, inclusive de origem vegetal. Nesse contexto, o presente trabalho teve por objetivo avaliar a atividade antimalárica de extratos metanólicos de Norantea brasiliensis cultivada sob condições in vivo e in vitro, espécie nativa ocorrente em restingas, com potencial medicinal já comprovado para várias atividades. Foram desenvolvidos protocolos de calogênese e cultura de raízes da espécie visando à definição de um sistema de produção de metabólitos. Para a cultura in vitro, explantes foram inoculados em meio líquido e sólido contendo diferentes fitorreguladores e concentrações. A partir da cultura de tecidos, foram testados extratos do material produzido biotecnologicamente para comparação com o material botânico cultivado no campo. Os testes sobre o potencial antimalárico foram realizados in vivo, utilizando-se camundongos infectados pelo Plasmodium berghei ANKA, e in vitro utilizando o Plasmodium falciparum. Em seguida foram administrados a cloroquina e os extratos vegetais. A parasitemia foi observada seguindo os protocolos já estabelecidos pelo Laboratório de Imunofarmacologia do Instituto Oswaldo Cruz (IOC). Resultados mostraram que explantes foliares e caulinares de plantas germinadas in vitro, inoculados em meio sólido B5 suplementado com 2,0 mg.mL-1 de ANA, são as melhores fontes para a produção de raízes, apresentando maiores valores de peso fresco e peso seco, mostrando-se um sistema promissor para a produção in vitro de metabólitos da espécie. A avaliação da atividade antimalárica in vivo revelou seu potencial a partir de extrato de raízes de planta cultivada in vivo, na concentração de 50 mg/kg apresentando redução significativa da parasitemia quando comparada com o controle não tratado. Paralelamente, nos testes in vitro a concentração de 100 μg/kg do extrato de raízes de planta cultivada in vivo apresentou diferença significativa quando comparada com as outras concentrações testadas e o controle negativo. Além disso, há uma tendência de aumento do efeito inibitório conforme o aumento da concentração do extrato. Os resultados indicam o potencial de atividade antimalárica em raízes de N. brasiliensis, sendo este estudo o primeiro realizado para a espécie
Resumo:
A Bacia Hidrográfica Lagos São João, localizada no sudoeste do Estado do Rio de Janeiro, abrange 13 municípios que abrigam cerca de 520 mil habitantes. Na temporada de férias esse número sobe para mais de 1 milhão de pessoas. A pastagem constitui o principal tipo de uso do solo, em seguida vem as áreas urbanas e as salinas. A partir da década de 1960 essa região passou a receber maior contingente populacional, tanto de veranistas quanto de moradores fixos, beneficiados pela implantação de novas vias de acesso, como a Ponte Rio-Niteroi e pela construção da represa de Juturnaíba, que ampliou o abastecimento de água dos municípios. Surge neste contexto a especulação imobiliária, que acelera a ocupação das terras próximas a Lagoa de Araruama. Rapidamente essas terras foram loteadas e o setor da construção civil foi ganhando força. Entretanto, a região não contou com adequado planejamento, e os investimentos em saneamento básico e outras infraestruturas urbanas não acompanharam o ritmo da construção civil, que cada vez mais investia em casas, prédios e condomínios, que ampliaram consideravelmente a área urbana e a ocupação da zona costeira. Sendo assim, ficou visível o aumento da malha urbana e a ocupação de áreas impróprias, como as margens dos corpos hídricos, os manguezais, dunas e restingas, além da redução da cobertura vegetal. Dessa forma, foi substancial a perda de qualidade ambiental na região, sobretudo, com relação a água da lagoa e dos rios, que passaram a receber maior volume de efluentes sem tratamento. O potencial turístico da região tem sido explorado e provocado altos investimentos dos agentes de especulação imobiliária, entretanto além de promover a ocupação em áreas irregulares, leva a privatização de espaços públicos e incentiva o fenômeno da segunda residência. A chegada de novos turistas iniciou o processo de desenvolvimento do turismo e, consequentemente, a redução da produção salineira. Com isso, o espaço local ganhou novos significados, inseridos pela lógica da urbanização turística. Foi essa nova lógica transformadora que, gradativamente, valorizou a paisagem local, ampliando e encarecendo o seu consumo. Além de ampliar as transformações espaciais, tendo em vista a expansão da malha urbana verificada nas imagens de satélites, atuais, que foram comparadas com fotografias aéreas de décadas anteriores. Todas as transformações ocorridas na região apresentam alguma relação com o desencadeamento de novos problemas ambientais identificados nos seus ecossistemas, sobretudo a Lagoa de Araruama, ou a ampliação de problemas anteriormente existentes.
Resumo:
O objetivo desse trabalho é o ordenamento territorial em área de proteção ambiental, analisando o processo de ocupação a partir da ação de promotores imobiliários numa área natural protegida por lei. Nos últimos 20 anos, observamos o crescimento irregular e desordenado de empreendimentos imobiliários, dinamizado pelo turismo. A procura por locações para veraneio provocou rápida expansão de loteamentos habitacionais e estabelecimentos comerciais sobre longa faixa de restinga, entre 26 km de praia e complexo sistema lagunar, localizada nos municípios de Saquarema, Araruama e Arraial do Cabo, Estado do Rio de Janeiro. Essa ocupação ameaça ecossistemas remanescentes como: brejos, lagoas costeiras, manguezais e restingas que deveriam ser preservados segundo leis ambientais. Nesse universo, responderemos as seguintes questões: Como atuam os agentes sociais presentes no conflito? Qual o papel do Estado nesse processo? As leis que regem as políticas de conservação ambiental são interdependentes? Há conflitos de competências? A coleta de informações ocorreu através de análise documental, de imagens de satélite, trabalhos de campo, visitas técnicas e entrevistas com agentes sociais. Os resultados possibilitaram um mapeamento da ação desses agentes na área em estudo, suas competências e geração de mapa de uso do solo.
Resumo:
A Lagoa de Araruama é reconhecida como a maior laguna hipersalina do mundo, cercada por dunas e vegetação de restinga que, emoldurando a sua decantada beleza natural, configura uma condição de cartão postal internacional. Isso associado à sua grande importância ecológica, faz com que ela se caracterize como um ambiente ímpar, dentro do contexto ambiental. Todavia a degradação de suas margens, ensejada pela sua ocupação desordenada, inclusive através da implantação de salinas, que vem ocorrendo há mais de um século, teve como consequência o desmatamento dessas áreas de preservação permanente, que se constituem na Faixa Marginal de Proteção (FMP). A fundamentação dessa proposta se pauta no fato de que a FMP vigente da lagoa, demarcada e aprovada através de Decreto n 42.694, de 11de novembro de 2010, não levou em conta esse aspecto de extrema relevância ambiental. Nessas condições, faz-se necessária a implementação de política voltada para ações com o objetivo de revitalizar o entorno da lagoa, de sorte a assegurar a preservação desse ecossistema localizado nas áreas limítrofes à orla da Lagoa de Araruama e garantir a sustentabilidade ambiental. O presente estudo se ateve ao levantamento das áreas em que se verificou a ocorrência de vegetação, com o intuito de ordenar a sua classificação, precipuamente com interesse em delimitar as áreas de restinga, que são consideradas Áreas de Preservação Permanente pela Resolução CONAMA 303/2002 e como parte integrante da FMP pelo Código Florestal, quando fixadoras de dunas e estabilizadoras de mangue. Em função dos resultados desse levantamento, propôs-se a inclusão, na Faixa Marginal de Proteção (FMP), das áreas em que ocorre a presença de vegetação de restinga, com respaldo no Código Florestal (Lei Federal n 4771/65) que, atualmente, disciplina o assunto, de sorte a preservar o corpo hídrico como um todo e garantir a sustentabilidade ambiental.
Resumo:
Grass shrimp, Palaemonetes pugio, are a common inhabitant of US East and Gulf coast salt marshes and are a food source for recreationally and economically important fish and crustacean species. Due to the relationship of grass shrimp with their ecosystem, any significant changes in grass shrimp population may have the potential to affect the estuarine system. Land use is a crucial concern in coastal areas where increasing development impacts the surrounding estuaries and salt marshes and has made grass shrimp population studies a logical choice to investigate urbanization effects. Any impact on tidal creeks will be an impact on grass shrimp populations and their associated micro-environment whether predator, prey or parasitic symbiont. Anthropogenic stressors introduced into the grass shrimp ecosystem may even change the intensity of infections from parasitic symbionts. An ectoparasite found on P. pugio is the bopyrid isopod Probopyrus pandalicola. Little is known about factors that may affect the occurrence of this isopod in grass shrimp populations. The goal was to analyze the prevalence of P. pandalicola in grass shrimp in relation to land use classifications, water quality parameters, and grass shrimp population metrics. Eight tidal creeks in coastal South Carolina were sampled monthly over a three year period. The occurrence of P. pandalicola ranged from 1.2% to 5.7%. Analysis indicated that greater percent water and marsh coverage resulted in a higher incidence of bopyrid occurrence. Analysis also indicated that higher bopyrid incidence occurred in creeks with higher salinity, temperature, and pH but lower dissolved oxygen. The land use characteristics found to limit bopyrid incidence were limiting to grass shrimp (definitive host) populations and probably copepod (intermediate host) populations as well.
Resumo:
A study was conducted, in association with the Alabama and Mississippi National Estuarine Research Reserves (NERRs) in the Gulf of Mexico (GoM) as well as the Georgia, South Carolina, and North Carolina NERRs in the Southeast (SE), to evaluate the impacts of coastal development on tidal creek sentinel habitats, including potential impacts to human health and well-being. Uplands associated with Southeast and Gulf of Mexico tidal creeks, and the salt marshes they drain, are popular locations for building homes, resorts, and recreational facilities because of the high quality of life and mild climate associated with these environments. Tidal creeks form part of the estuarine ecosystem characterized by high biological productivity, great ecological value, complex environmental gradients, and numerous interconnected processes. This research combined a watershed-level study integrating ecological, public health and human dimension attributes with watershed-level land cover data. The approach used for this research was based upon a comparative watershed and ecosystem approach that sampled tidal creek networks draining developed watersheds (e.g., suburban, urban, and industrial) as well as undeveloped sites (Holland et al. 2004, Sanger et al. 2008). The primary objective of this work was to define the relationships between coastal development with its concomitant land cover changes, and non-point source pollution loading and the ecological and human health and wellbeing status of tidal creek ecosystems. Nineteen tidal creek systems, located along the Southeastern United States coast from southern North Carolina to southern Georgia, and five Gulf of Mexico systems from Alabama and Mississippi were sampled during summer (June-August) 2005, 2006 (SE) and 2008 (GoM). Within each system, creeks were divided into two primary segments based upon tidal zoning: intertidal (i.e., shallow, narrow headwater sections) and subtidal (i.e., deeper and wider sections), and watersheds were delineated for each segment. In total, we report findings on 29 intertidal and 24 subtidal creeks. Indicators sampled throughout each creek included water quality (e.g., dissolved oxygen, salinity, nutrients, chlorophyll-a levels), sediment quality (e.g., characteristics, contaminant levels including emerging contaminants), pathogen and viral indicators (e.g., fecal coliform, enterococci, F+ coliphages, F- coliphages), and abundance and tissue contamination of biological resources (e.g., macrobenthic and nektonic communities, shellfish tissue contaminants). Tidal creeks have been identified as a sentinel habitat to assess the impacts of coastal development on estuarine areas in the southeastern US. A conceptual model for tidal creeks in the southeastern US identifies that human alterations (stressors) of upland in a watershed such as increased impervious cover will lead to changes in the physical and chemical environment such as microbial and nutrient pollution (exposures), of a receiving water body which then lead to changes in the living resources (responses). The overall objective of this study is to evaluate the applicability of the current tidal creek classification framework and conceptual model linking tidal creek ecological condition to potential impacts of development and urban growth on ecosystem value and function in the Gulf of Mexico US in collaboration with Gulf of Mexico NERR sites. The conceptual model was validated for the Gulf of Mexico US tidal creeks. The tidal creek classification system developed for the southeastern US could be applied to the Gulf of Mexico tidal creeks; however, some differences were found that warrant further examination. In particular, pollutants appeared to translate further downstream in the Gulf of Mexico US compared to the southeastern US. These differences are likely the result of the morphological and oceanographic differences between the two regions. Tidal creeks appear to serve as sentinel habitats to provide an early warning of the ensuing harm to the larger ecosystem in both the Southeastern and Gulf of Mexico US tidal creeks.
Resumo:
We review the progress made in the emerging field of coastal seascape ecology, i.e. the application of landscape ecology concepts and techniques to the coastal marine environment. Since the early 1990s, the landscape ecology approach has been applied in several coastal subtidal and intertidal biogenic habitats across a range of spatial scales. Emerging evidence indicates that animals in these seascapes respond to the structure of patches and patch mosaics in different ways and at different spatial scales, yet we still know very little about the ecological significance of these relationships and the consequences of change in seascape patterning for ecosystem functioning and overall biodiversity. Ecological interactions that occur within patches and among different types of patches (or seascapes) are likely to be critically important in maintaining primary and secondary production, trophic transfer, biodiversity, coastal protection, and supporting a wealth of ecosystem goods and services. We review faunal responses to patch and seascape structure, including effects of fragmentation on 5 focal habitats: seagrass meadows, salt marshes, coral reefs, mangrove forests, and oyster reefs. Extrapolating and generalizing spatial relationships between ecological patterns and processes across scales remains a significant challenge, and we show that there are major gaps in our understanding of these relationships. Filling these gaps will be crucial for managing and responding to an inevitably changing coastal environment. We show that critical ecological thresholds exist in the structural patterning of biogenic ecosystems that, when exceeded, cause abrupt shifts in the distribution and abundance of organisms. A better understanding of faunal–seascape relationships, including the identifications of threshold effects, is urgently needed to support the development of more effective and holistic management actions in restoration, site prioritization, and forecasting the impacts of environmental change.
Resumo:
Soil samples from a Louisiana Barataria Basin brackish marshes were fractionated into acid-volatile sulfides (AVS), HCl-soluble sulfur, elemental sulfur, pyrite sulfur, ester-sulfate sulfur, and carbon-bonded sulfur. Inorganic sulfur composed 13% of total sulfur in brackish marsh soil with HCl-soluble sulfur representing 63–92% of the inorganic sulfur fraction. AVS represented less than 1% of the total sulfur pool. Pyrite sulfur and elemental sulfur together accounted for 8–33% of the inorganic sulfur pool. Organic sulfur, in the forms of ester-sulfate sulfur and carbon-bonded sulfur, was the most dominant pool representing the majority of total sulfur in brackish marsh. Results were compared to values reported for fresh and salt marshes. Reported inorganic sulfur fractions were greater in adjacent marshes, constituting 24% of total sulfur in salt marsh, and 22% in freshwater marshes. Along a salinity gradient, HCl-soluble sulfur represented 78–86% of the inorganic sulfur fraction in fresh, brackish, and salt marsh. Organic sulfur in the forms of ester-sulfate sulfur and carbon-bonded sulfur was the major constituent (76–87%) of total sulfur in all marshes. Reduced sulfur species, except elemental sulfur, increased seaward along the salinity gradient. Accumulation of reduced sulfur forms through sedimentation processes was significant in marsh energy flow in fresh, brackish and salt marshes.
Resumo:
本文以具有典型特征的苏北淤泥质潮滩海岸作为研究区,利用1975-2003年间14景覆盖该地区的Landsat和SPOT卫星影像作为主要数据源,结合地面调查和验证工作,在遥感影像处理和地理信息系统分析技术的支持下,对区内潮滩、岸线、水边线和盐沼植被等进行遥感解译,分析苏北辐射沙脊群和沿岸地貌的空间分布特征和动态演变趋势。研究结果表明:苏北辐射沙脊群海域的潮汐水位过程的不同步现象普遍存在,限制了常规遥感数据在苏北潮滩地貌研究中的适用范围和解译精度;在人工判别的辅助下,多光谱遥感的非监督分类方法可以有效解译淤泥质潮滩的水边线;利用修改型土壤调整植被指数(MSAVI)可以较好地提取潮滩上的盐沼植被信息;苏北沿岸潮滩的快速淤长促进了盐沼植被带向海侧快速扩展,近年来持续的潮滩围垦工程则不断从陆侧侵占盐沼植被带,使盐沼植被带宽度减小乃至消失;在大规模人类活动和自然条件的共同影响下,苏北辐射沙脊群海岸的岸线发育趋于平直化,无序的潮滩围垦项目使得可垦滩地资源被过度消耗;1975~2002年间,研究区北部和南部沿岸的高潮滩整体上处于淤长状态,中部沿岸潮滩和离岸沙洲高潮滩则被大面积侵蚀;1999年以来,研究区内低潮滩部位开始形成有序排列的滩面地物,并表现出逐年大面积蔓延的趋势,可能是滩涂紫菜养殖区扩展的结果。
Resumo:
Restoration has been elevated as an important strategy to reverse the decline of coastal wetlands worldwide. Current practice in restoration science emphasizes minimizing competition between outplanted propagules to maximize planting success. This paradigm persists despite the fact that foundational theory in ecology demonstrates that positive species interactions are key to organism success under high physical stress, such as recolonization of bare substrate. As evidence of how entrenched this restoration paradigm is, our survey of 25 restoration organizations in 14 states in the United States revealed that >95% of these agencies assume minimizing negative interactions (i.e., competition) between outplants will maximize propagule growth. Restoration experiments in both Western and Eastern Atlantic salt marshes demonstrate, however, that a simple change in planting configuration (placing propagules next to, rather than at a distance from, each other) results in harnessing facilitation and increased yields by 107% on average. Thus, small adjustments in restoration design may catalyze untapped positive species interactions, resulting in significantly higher restoration success with no added cost. As positive interactions between organisms commonly occur in coastal ecosystems (especially in more physically stressful areas like uncolonized substrate) and conservation resources are limited, transformation of the coastal restoration paradigm to incorporate facilitation theory may enhance conservation efforts, shoreline defense, and provisioning of ecosystem services such as fisheries production.