992 resultados para SPECTROSCOPIC CHARACTERIZATION
Resumo:
Alkylsulphinylpyridine ligands containing three potential donor centres: N, S and O atoms and two complexes of general formula trans-[PtCl2(PEt3)PySOR)] (R = Me and Pr-n) were prepared and characterized by elemental analysis, i.r. spectroscopy, H-1- and P-31-n.m.r. and X-ray crystallography. The ambidentate ligands act in both situations as monodentate ligands, bonded to the metal exclusively through the nitrogen atom. The crystal structures revealed the occurrence of discrete molecules and, in both complexes, the Pt atoms are coordinated in square planar arrangements by two chloride ions, in a trans configuration, by the pyridine nitrogen atom, and by the phosphine P atom. The oxygen atoms do not take part in the complexation scheme.
Resumo:
This work describes the growth of Bi2-xPbxSr2Can-1CunO2n+4 thin films by the dip-coating technique for 0.4 less than or equal to x less than or equal to 1. X-ray and Raman spectroscopic techniques were carried out in order to characterize the films at room temperature. From X-ray data it is observed that the films are multi-phased presenting phases 2201, 2212 and 2223 along with the undesirable Ca2PbO4 phase. It is also observed that phase 2212 becomes dominant when Pb content increases. The Raman modes observed agree with the overall features expected for these compounds. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Excitation and dynamic emission spectra of Eu3+ ions were simultaneously used with FTIR and Raman spectroscopy to study the structural evolution during SnO2 sol → gel → xerogel conversion. Results make evident an increase of the surroundings symmetry for the Eu3+ ions dissolved in SnO2 matrix and a decrease of the amount of hydroxo groups (Sn-OH) during drying. These phenomena were associated to the pursuit of the condensation reaction after gelation. © 1994 Kluwer Academic Publishers.
Resumo:
The one-dimensional coordination polymer of palladium(II) with pyrazolato (Pz -) and azide (N 3 -) as bridging ligands, of formula [Pd 3(μ-N 3)(μ-Pz) 5] n, has been prepared. From IR and Raman studies it was evidenced the exobidentate nature of pyrazole ligands as well the μ-1,1-bridging coordination of azido groups. NMR experiments showed two sets of broadened signals with different intensities indicating the presence of pyrazolato groups in distinct chemical environments. The proposed structure of [Pd 3(μ-N 3)(μ-Pz) 5] n consists of a zigzag ribbon in which each (Pz) 2Pd(Pz) 2 entity is bound to two stacked planar units [Pd(μ-Pz)(μ-N 3)Pd core] with very weak Pd-Pd interaction, based on UV-Vis spectroscopy.
Resumo:
In this work we present results on the preparation of planar waveguides based on HfO2 and HfO2-SiO2. Stable sols containing europium and erbium doped HfO2 nanoparticles have been prepared and characterized. The nanosized sol was either deposited (spin-coating) on quartz substrates or embedded in (3-glycidoxipropil)trimethoxisilane (GPTS) used as a hybrid host for posterior deposition. The refractive index dispersion and luminescence characteristics were determined for the resulting HfO2 films. The optical parameters of the waveguides such as refractive index, thickness and propagation losses were measured for the hybrid composite. The planar waveguides present thickness of a few micra and support well confined propagating modes.
Resumo:
Methionine sulfoxide complexes of iron(II) and copper(II) were synthesized and characterized by chemical and spectroscopic techniques. Elemental and atomic absorption analyses fit the compositions K2[Fe(metSO) 2]SO4 · H2O and [Cu(metSO)2] · H2O. Electronic absorption spectra of the complexes are typical of octahedral geometries. Infrared spectroscopy suggests coordination of the ligand to the metal through the carboxylate and sulfoxide groups. An EPR spectrum of the Cu(II) complex indicates tetragonal distortion of its octahedral symmetry. 57Fe Mössbauer parameters are also consistent with octahedral stereochemistry for the iron(II) complex. The complexes are very soluble in water.
Resumo:
Nowadays, the research for new and better antimicrobial compounds is an important field due to the increase of immunocompromised patients, the use of invasive medical procedures and extensive surgeries, among others, that can affect the incidence of infections. Another big problem associated is the occurrence of drug-resistant microbial strains that impels a ceaseless search for new antimicrobial agents. In this context, a series of heterocyclic- sulfonamide complexes with Co(II) was synthesized and characterized with the aim of obtaining new antimicrobial compounds. The structural characterization was performed using different spectroscopic methods (UV-Vis, IR, and EPR). In spite of the fact that the general stoichiometry for all the complexes was Co(sulfonamide)2·nH2O, the coordination atoms were different depending on the coordinated sulfonamide. The crystal structure of [Co(sulfamethoxazole)2(H2O)2]·H 2O was obtained by X-ray diffraction showing that Co(II) is in a slightly tetragonal distorted octahedron where sulfamethoxazole molecules act as a head-to-tail bridges between two cobalt atoms, forming polymeric chains. Besides, the activity against Mycobacterium tuberculosis, one of the responsible for tuberculosis, and the cytotoxicity on J774A.1 macrophage cells were evaluated. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Characterization by micro-Raman spectroscopy of polymeric materials used as nuclear track detectors reveals physico-chemical and morphological information on the material's molecular structure. In this work, the nuclear track detector poly(allyl diglycol carbonate), or Columbia Resin 39 (CR-39), was characterized according to the fluence of alpha particles produced by a 226Ra source and chemical etching time. Therefore, damage of the CR-39 chemical structure due to the alpha-particle interaction with the detector was analyzed at the molecular level. It was observed that the ionization and molecular excitation of the CR-39 after the irradiation process entail cleavage of chemical bonds and formation of latent track. In addition, after the chemical etching, there is also loss of polymer structure, leading to the decrease of the group density C-O-C (∼888 cm-1), CH=CH (∼960 cm -1), C-O (∼1110 cm-1), C-O-C (∼1240 cm -1), C-O (∼1290 cm-1), C-O (∼1741 cm -1), -CH2- (∼2910 cm-1), and the main band -CH2- (∼2950 cm-1). The analyses performed after irradiation and chemical etching led to a better understanding of the CR-39 molecular structure and better comprehension of the process of the formation of the track, which is related to chemical etching kinetics. Copyright © 2013 Society for Applied Spectroscopy.
Resumo:
A polymeric complex [Eu(α-tpc)3(α-Htpc) 2]n and its characterization by single crystal X-ray and thermal analysis, infrared and photoluminescence spectroscopies are described. The compound crystallizes in the monoclinic Cc space group. The asymmetric unit is formed from a europium ion bonded to one carboxyl oxygen of five different thiophene carboxylic moieties. Three of these moieties are deprotonated and bridge between neighboring europium ions giving rise to an infinite polymer along the c axis. Besides the europium characteristic emission lines, the emission spectra show unambiguously the crystal size effect on the 5D0 → 7F0 transition. The complex thermal decomposition at 220 C leads to a stable luminescent complex in which the 5D0 → 7F4 transition reveals a monomeric characteristic. The Judd-Ofelt intensity parameters to the polymeric and the monomeric compound with the same ligand and coordination number were compared. © 2013 Published by Elsevier Ltd.
Resumo:
The monodentate cis-[Ru(phen)(2)(hist)(2)](2+) 1R and the bidentate cis-[Ru(phen)(2)(hist)](2+) 2A complexes were prepared and characterized using spectroscopic (H-1, (H-1-H-1) COSY and (H-1-C-13) HSQC NMR, UV-vis, luminescence) techniques. The complexes presented absorption and emission in the visible region, as well as a tri-exponential emission decay. The complexes are soluble in aqueous and non-aqueous solution with solubility in a buffer solution of pH 7.4 of 1.14 x 10(-3) mol L-1 for (1R + 2A) and 6.43 x 10(-4) mol L-1 for 2A and lipophilicity measured in an aqueous-octanol solution of -1.14 and -0.96, respectively. Photolysis in the visible region in CH3CN converted the starting complexes into cis-[Ru(phen)(2)(CH3CN)(2)](2+). Histamine photorelease was also observed in pure water and in the presence of BSA (1.0 x 10(-6) mol L-1). The bidentate coordination of the histamine to the ruthenium center in relation to the monodentate coordination increased the photosubstitution quantum yield by a factor of 3. Pharmacological studies showed that the complexes present a moderate inhibition of AChE with an IC50 of 21 mu mol L-1 (referred to risvagtini, IC50 181 mu mol L-1 and galantamine IC50 0.006 mu mol L-1) with no appreciable cytotoxicity toward to the HeLa cells (50% cell viability at 925 mu mol L-1). Cell uptake of the complexes into HeLa cells was detected by fluorescence confocal microscopy. Overall, the observation of a luminescent complex that penetrates the cell wall and has low cytotoxicity, but is reactive photochemically, releasing histamine when irradiated with visible light, are interesting features for application of these complexes as phototherapeutic agents.
Resumo:
The title compound [Ni(C20H15N2OS)(2)] is prepared by the reaction of metal acetate with the corresponding acylthiourea derivative. The complex is characterized by elemental analysis, IR, H-1 and C-13 NMR, and its structure is determined by single crystal X-ray diffraction. The Ni(II) ion is coordinated by the S and O atoms of two N-benzoyl-N',N'-diphenylthiourea ligands in a slightly distorted square-planar coordination geometry. The two O and two S atoms are mutually cis to each other. The substance crystallizes triclinic (P-1 space group) with cell dimensions a = 10.7262(9) , b = 12.938(3) , c = 14.2085(12) , alpha = 74.650(4)A degrees, beta = 78.398(4)A degrees, gamma = 68.200(5)A degrees, and two formula units in the unit cell. The structure is very close to the related N-(2-furoyl) Ni complex reported previously.
Resumo:
The present study reports the spectroscopic characterization by UV-visible absorption spectroscopy, magnetic circular dichroism (MCD) and electron paramagnetic resonance (EPR) of the recombinant orf10-encoded P450-camphor like protein (P450CLA)of Streptomyces clavuligerus expressed in Escherichia coli Rosetta in the native form and associated to external ligands containing the β-lactam, oxazole and alkylamine-derived (alcohol) moieties of the clavulamic acid. Considering the diversity of potential applications for the enzyme, the reactivity with tert-butylhydroperoxide (tert-BuOOH) was also characterized. P450CLA presents a covalently bound heme group and exhibited the UV-visible, CD and MCD spectral features of P450CAM including the fingerprint Soret band at 450 nm generated by the ferrous CO-complex. P450CLA was converted to high valence species by tert-BuOOH and promoted homolytic scission of the O-O bond. The radical profile of the reaction was tert-butyloxyl as primary and methyl and butylperoxyl as secondary radicals. The secondary methyl and butylperoxyl radicals resulted respectively from the β-scission of the alkoxyl radical and from the reaction of methyl radical with molecular oxygen.