840 resultados para Robotic Grasping


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a novel vision-based underwater robotic system for the identification and control of Crown-Of-Thorns starfish (COTS) in coral reef environments. COTS have been identified as one of the most significant threats to Australia's Great Barrier Reef. These starfish literally eat coral, impacting large areas of reef and the marine ecosystem that depends on it. Evidence has suggested that land-based nutrient runoff has accelerated recent outbreaks of COTS requiring extensive use of divers to manually inject biological agents into the starfish in an attempt to control population numbers. Facilitating this control program using robotics is the goal of our research. In this paper we introduce a vision-based COTS detection and tracking system based on a Random Forest Classifier (RFC) trained on images from underwater footage. To track COTS with a moving camera, we embed the RFC in a particle filter detector and tracker where the predicted class probability of the RFC is used as an observation probability to weight the particles, and we use a sparse optical flow estimation for the prediction step of the filter. The system is experimentally evaluated in a realistic laboratory setup using a robotic arm that moves a camera at different speeds and heights over a range of real-size images of COTS in a reef environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although robotics research has seen advances over the last decades robots are still not in widespread use outside industrial applications. Yet a range of proposed scenarios have robots working together, helping and coexisting with humans in daily life. In all these a clear need to deal with a more unstructured, changing environment arises. I herein present a system that aims to overcome the limitations of highly complex robotic systems, in terms of autonomy and adaptation. The main focus of research is to investigate the use of visual feedback for improving reaching and grasping capabilities of complex robots. To facilitate this a combined integration of computer vision and machine learning techniques is employed. From a robot vision point of view the combination of domain knowledge from both imaging processing and machine learning techniques, can expand the capabilities of robots. I present a novel framework called Cartesian Genetic Programming for Image Processing (CGP-IP). CGP-IP can be trained to detect objects in the incoming camera streams and successfully demonstrated on many different problem domains. The approach requires only a few training images (it was tested with 5 to 10 images per experiment) is fast, scalable and robust yet requires very small training sets. Additionally, it can generate human readable programs that can be further customized and tuned. While CGP-IP is a supervised-learning technique, I show an integration on the iCub, that allows for the autonomous learning of object detection and identification. Finally this dissertation includes two proof-of-concepts that integrate the motion and action sides. First, reactive reaching and grasping is shown. It allows the robot to avoid obstacles detected in the visual stream, while reaching for the intended target object. Furthermore the integration enables us to use the robot in non-static environments, i.e. the reaching is adapted on-the- fly from the visual feedback received, e.g. when an obstacle is moved into the trajectory. The second integration highlights the capabilities of these frameworks, by improving the visual detection by performing object manipulation actions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Apathy, agitated behaviours, loneliness and depression are common consequences of dementia. This trial aims to evaluate the effect of a robotic animal on behavioural and psychological symptoms of dementia in people with dementia living in long-term aged care. Methods and analysis: A cluster-randomised controlled trial with three treatment groups: PARO (robotic animal), Plush-Toy (non-robotic PARO) or Usual Care (Control). The nursing home sites are Australian Government approved and accredited facilities of 60 or more beds. The sites are located in South-East Queensland, Australia. A sample of 380 adults with a diagnosis of dementia, aged 60 years or older living in one of the participating facilities will be recruited. The intervention consists of three individual 15 min non-facilitated sessions with PARO or Plush- Toy per week, for a period of 10 weeks. The primary outcomes of interest are improvement in agitation, mood states and engagement. Secondary outcomes include sleep duration, step count, change in psychotropic medication use, change in treatment costs, and staff and family perceptions of PARO or Plush-Toy. Video data will be analysed using Noldus XT Pocket Observer; descriptive statistics will be used for participants’ demographics and outcome measures; cluster and individual level analyses to test all hypotheses and Generalised Linear Models for cluster level and Generalised Estimation Equations and/or Multi-level Modeling for individual level data. Ethics and dissemination: The study participants or their proxy will provide written informed consent. The Griffith University Human Research Ethics Committee has approved the study (NRS/03/14/HREC). The results of the study will provide evidence of the efficacy of a robotic animal as a psychosocial treatment for the behavioural and psychological symptoms of dementia. Findings will be presented at local and international conference meetings and published in peer-reviewed journals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vision sense of standalone robots is limited by line of sight and onboard camera capabilities, but processing video from remote cameras puts a high computational burden on robots. This paper describes the Distributed Robotic Vision Service, DRVS, which implements an on-demand distributed visual object detection service. Robots specify visual information requirements in terms of regions of interest and object detection algorithms. DRVS dynamically distributes the object detection computation to remote vision systems with processing capabilities, and the robots receive high-level object detection information. DRVS relieves robots of managing sensor discovery and reduces data transmission compared to image sharing models of distributed vision. Navigating a sensorless robot from remote vision systems is demonstrated in simulation as a proof of concept.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper introduces a machine learning based system for controlling a robotic manipulator with visual perception only. The capability to autonomously learn robot controllers solely from raw-pixel images and without any prior knowledge of configuration is shown for the first time. We build upon the success of recent deep reinforcement learning and develop a system for learning target reaching with a three-joint robot manipulator using external visual observation. A Deep Q Network (DQN) was demonstrated to perform target reaching after training in simulation. Transferring the network to real hardware and real observation in a naive approach failed, but experiments show that the network works when replacing camera images with synthetic images.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Robotic vision is limited by line of sight and onboard camera capabilities. Robots can acquire video or images from remote cameras, but processing additional data has a computational burden. This paper applies the Distributed Robotic Vision Service, DRVS, to robot path planning using data outside line-of-sight of the robot. DRVS implements a distributed visual object detection service to distributes the computation to remote camera nodes with processing capabilities. Robots request task-specific object detection from DRVS by specifying a geographic region of interest and object type. The remote camera nodes perform the visual processing and send the high-level object information to the robot. Additionally, DRVS relieves robots of sensor discovery by dynamically distributing object detection requests to remote camera nodes. Tested over two different indoor path planning tasks DRVS showed dramatic reduction in mobile robot compute load and wireless network utilization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurately quantifying total greenhouse gas emissions (e.g. methane) from natural systems such as lakes, reservoirs and wetlands requires the spatial-temporal measurement of both diffusive and ebullitive (bubbling) emissions. Traditional, manual, measurement techniques provide only limited localised assessment of methane flux, often introducing significant errors when extrapolated to the whole-of-system. In this paper, we directly address these current sampling limitations and present a novel multiple robotic boat system configured to measure the spatiotemporal release of methane to atmosphere across inland waterways. The system, consisting of multiple networked Autonomous Surface Vehicles (ASVs) and capable of persistent operation, enables scientists to remotely evaluate the performance of sampling and modelling algorithms for real-world process quantification over extended periods of time. This paper provides an overview of the multi-robot sampling system including the vehicle and gas sampling unit design. Experimental results are shown demonstrating the system’s ability to autonomously navigate and implement an exploratory sampling algorithm to measure methane emissions on two inland reservoirs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an enhanced relational description for the prescription of the grasp requirement and evolution of the posture of a digital human hand towards satisfaction of this requirement. Precise relational description needs anatomical segmentation of the hand geometry into palmar, dorsal and lateral patches using the palm-plane and joint locations information, and operational segmentation of the object geometry into pull,push and lateral patches with due consideration to the effect of friction. Relational description identifies appropriate patches for a desired grasp condition. Satisfaction of this requirement occurs in two discrete stages,namely,contact establishment and post-contact force exertion for object capturing. Contact establishment occurs in four potentially overlapping phases,namely,re-orientation,transfer,pre- shaping,and closing-in. The novel h and re-orientation phase,enables the palm to face the object in a task sequence scenario, transfer takes the wrist to the ball park ; pre-shaping and close-in finally achieves the contact. In this paper, an anatomically pertinent closed-form formulation is presented for the closing-in phase for identification of the point of contact on the patches ,prescribed by the relational description. Since mere contact does not ensure grasp and slip phenomenon at the point of contact on application of force is a common occurrence, the effect of slip in presence of friction has been studied for 2D and 3D object grasping endeavours and a computational generation of the slip locus is presented.A general slip locus is found to be a non-linear curve even on planar faces.Two varieties of slip phenomena,namely,stabilizing and non-stabilizing slips, and their local characteristics have been identified.Study of the evolution of this slip characteristic over the slip locus exhibited diverse grasping behaviour possibilities. Thus, the relational description paradigm not only makes the requirement specification easy and meaningful but also enables high fidelity hand object interaction studies possible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

215 p.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flies are particularly adept at balancing the competing demands of delay tolerance, performance, and robustness during flight, which invites thoughtful examination of their multimodal feedback architecture. This dissertation examines stabilization requirements for inner-loop feedback strategies in the flapping flight of Drosophila, the fruit fly, against the backdrop of sensorimotor transformations present in the animal. Flies have evolved multiple specializations to reduce sensorimotor latency, but sensory delay during flight is still significant on the timescale of body dynamics. I explored the effect of sensor delay on flight stability and performance for yaw turns using a dynamically-scaled robot equipped with a real-time feedback system that performed active turns in response to measured yaw torque. The results show a fundamental tradeoff between sensor delay and permissible feedback gain, and suggest that fast mechanosensory feedback provides a source of active damping that compliments that contributed by passive effects. Presented in the context of these findings, a control architecture whereby a haltere-mediated inner-loop proportional controller provides damping for slower visually-mediated feedback is consistent with tethered-flight measurements, free-flight observations, and engineering design principles. Additionally, I investigated how flies adjust stroke features to regulate and stabilize level forward flight. The results suggest that few changes to hovering kinematics are actually required to meet steady-state lift and thrust requirements at different flight speeds, and the primary driver of equilibrium velocity is the aerodynamic pitch moment. This finding is consistent with prior hypotheses and observations regarding the relationship between body pitch and flight speed in fruit flies. The results also show that the dynamics may be stabilized with additional pitch damping, but the magnitude of required damping increases with flight speed. I posit that differences in stroke deviation between the upstroke and downstroke might play a critical role in this stabilization. Fast mechanosensory feedback of the pitch rate could enable active damping, which would inherently exhibit gain scheduling with flight speed if pitch torque is regulated by adjusting stroke deviation. Such a control scheme would provide an elegant solution for flight stabilization across a wide range of flight speeds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modern robots are increasingly expected to function in uncertain and dynamically challenging environments, often in proximity with humans. In addition, wide scale adoption of robots requires on-the-fly adaptability of software for diverse application. These requirements strongly suggest the need to adopt formal representations of high level goals and safety specifications, especially as temporal logic formulas. This approach allows for the use of formal verification techniques for controller synthesis that can give guarantees for safety and performance. Robots operating in unstructured environments also face limited sensing capability. Correctly inferring a robot's progress toward high level goal can be challenging.

This thesis develops new algorithms for synthesizing discrete controllers in partially known environments under specifications represented as linear temporal logic (LTL) formulas. It is inspired by recent developments in finite abstraction techniques for hybrid systems and motion planning problems. The robot and its environment is assumed to have a finite abstraction as a Partially Observable Markov Decision Process (POMDP), which is a powerful model class capable of representing a wide variety of problems. However, synthesizing controllers that satisfy LTL goals over POMDPs is a challenging problem which has received only limited attention.

This thesis proposes tractable, approximate algorithms for the control synthesis problem using Finite State Controllers (FSCs). The use of FSCs to control finite POMDPs allows for the closed system to be analyzed as finite global Markov chain. The thesis explicitly shows how transient and steady state behavior of the global Markov chains can be related to two different criteria with respect to satisfaction of LTL formulas. First, the maximization of the probability of LTL satisfaction is related to an optimization problem over a parametrization of the FSC. Analytic computation of gradients are derived which allows the use of first order optimization techniques.

The second criterion encourages rapid and frequent visits to a restricted set of states over infinite executions. It is formulated as a constrained optimization problem with a discounted long term reward objective by the novel utilization of a fundamental equation for Markov chains - the Poisson equation. A new constrained policy iteration technique is proposed to solve the resulting dynamic program, which also provides a way to escape local maxima.

The algorithms proposed in the thesis are applied to the task planning and execution challenges faced during the DARPA Autonomous Robotic Manipulation - Software challenge.