973 resultados para Reconfigurable platforms
Resumo:
To increase the amount of logic available to the users in SRAM-based FPGAs, manufacturers are using nanometric technologies to boost logic density and reduce costs, making its use more attractive. However, these technological improvements also make FPGAs particularly vulnerable to configuration memory bit-flips caused by power fluctuations, strong electromagnetic fields and radiation. This issue is particularly sensitive because of the increasing amount of configuration memory cells needed to define their functionality. A short survey of the most recent publications is presented to support the options assumed during the definition of a framework for implementing circuits immune to bit-flips induction mechanisms in memory cells, based on a customized redundant infrastructure and on a detection-and-fix controller.
Resumo:
Institutions have been creating their own specific weblab infrastructures. Usually, they use distinct software and hardware architectures comprehending instruments and modules (I&M) able to be parameterized but difficult to be shared. These aspects are impairing their widespread in education, since collaboration between institutions, in developing and sharing resources, is still low. To handle both aspects, this paper proposes the adoption of the IEEE1451.0 Std. with FPGA technology for creating reconfigurable weblab infrastructures. It is suggested the adoption of an IEEE1451.0 infrastructure with compatible instruments, described in Hardware Description Languages (HDL), to be reconfigured in FPGA-based boards. Besides an overview of the IEEE1451.0 Std., this paper presents a solution currently under development which seeks to enable the reconfiguration and the remote control of weblab infrastructures using a set of IEEE1451.0 HTTP commands.
Resumo:
The new generations of SRAM-based FPGA (field programmable gate array) devices are the preferred choice for the implementation of reconfigurable computing platforms intended to accelerate processing in real-time systems. However, FPGA's vulnerability to hard and soft errors is a major weakness to robust configurable system design. In this paper, a novel built-in self-healing (BISH) methodology, based on run-time self-reconfiguration, is proposed. A soft microprocessor core implemented in the FPGA is responsible for the management and execution of all the BISH procedures. Fault detection and diagnosis is followed by repairing actions, taking advantage of the dynamic reconfiguration features offered by new FPGA families. Meanwhile, modular redundancy assures that the system still works correctly
Resumo:
Dynamically reconfigurable systems have benefited from a new class of FPGAs recently introduced into the market, which allow partial and dynamic reconfiguration at run-time, enabling multiple independent functions from different applications to share the same device, swapping resources as needed. When the sequence of tasks to be performed is not predictable, resource allocation decisions have to be made on-line, fragmenting the FPGA logic space. A rearrangement may be necessary to get enough contiguous space to efficiently implement incoming functions, to avoid spreading their components and, as a result, degrading their performance. This paper presents a novel active replication mechanism for configurable logic blocks (CLBs), able to implement on-line rearrangements, defragmenting the available FPGA resources without disturbing those functions that are currently running.
Resumo:
Fragmentation on dynamically reconfigurable FPGAs is a major obstacle to the efficient management of the logic space in reconfigurable systems. When resource allocation decisions have to be made at run-time a rearrangement may be necessary to release enough contiguous resources to implement incoming functions. The feasibility of run-time relocation depends on the processing time required to set up rearrangements. Moreover, the performance of the relocated functions should not be affected by this process or otherwise the whole system performance, and even its operation, may be at risk. Relocation should take into account not only specific functional issues, but also the FPGA architecture, since these two aspects are normally intertwined. A simple and fast method to assess performance degradation of a function during relocation and to speed up the defragmentation process, based on previous function labelling and on the application of the Euclidian distance concept, is proposed in this paper.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestrado em Engenharia Electrónica e Telecomunicações
Resumo:
Reconfigurable computing experienced a considerable expansion in the last few years, due in part to the fast run-time partial reconfiguration features offered by recent SRAM-based Field Programmable Gate Arrays (FPGAs), which allowed the implementation in real-time of dynamic resource allocation strategies, with multiple independent functions from different applications sharing the same logic resources in the space and temporal domains. However, when the sequence of reconfigurations to be performed is not predictable, the efficient management of the logic space available becomes the greatest challenge posed to these systems. Resource allocation decisions have to be made concurrently with system operation, taking into account function priorities and optimizing the space currently available. As a consequence of the unpredictability of this allocation procedure, the logic space becomes fragmented, with many small areas of free resources failing to satisfy most requests and so remaining unused. A rearrangement of the currently running functions is therefore necessary, so as to obtain enough contiguous space to implement incoming functions, avoiding the spreading of their components and the resulting degradation of system performance. A novel active relocation procedure for Configurable Logic Blocks (CLBs) is herein presented, able to carry out online rearrangements, defragmenting the available FPGA resources without disturbing functions currently running.
Resumo:
Sparse matrix-vector multiplication (SMVM) is a fundamental operation in many scientific and engineering applications. In many cases sparse matrices have thousands of rows and columns where most of the entries are zero, while non-zero data is spread over the matrix. This sparsity of data locality reduces the effectiveness of data cache in general-purpose processors quite reducing their performance efficiency when compared to what is achieved with dense matrix multiplication. In this paper, we propose a parallel processing solution for SMVM in a many-core architecture. The architecture is tested with known benchmarks using a ZYNQ-7020 FPGA. The architecture is scalable in the number of core elements and limited only by the available memory bandwidth. It achieves performance efficiencies up to almost 70% and better performances than previous FPGA designs.
Resumo:
Mestrado em Engenharia Informática - Área de Especialização em Sistemas Gráficos e Multimédia
Resumo:
Heterogeneous multicore platforms are becoming an interesting alternative for embedded computing systems with limited power supply as they can execute specific tasks in an efficient manner. Nonetheless, one of the main challenges of such platforms consists of optimising the energy consumption in the presence of temporal constraints. This paper addresses the problem of task-to-core allocation onto heterogeneous multicore platforms such that the overall energy consumption of the system is minimised. To this end, we propose a two-phase approach that considers both dynamic and leakage energy consumption: (i) the first phase allocates tasks to the cores such that the dynamic energy consumption is reduced; (ii) the second phase refines the allocation performed in the first phase in order to achieve better sleep states by trading off the dynamic energy consumption with the reduction in leakage energy consumption. This hybrid approach considers core frequency set-points, tasks energy consumption and sleep states of the cores to reduce the energy consumption of the system. Major value has been placed on a realistic power model which increases the practical relevance of the proposed approach. Finally, extensive simulations have been carried out to demonstrate the effectiveness of the proposed algorithm. In the best-case, savings up to 18% of energy are reached over the first fit algorithm, which has shown, in previous works, to perform better than other bin-packing heuristics for the target heterogeneous multicore platform.
Resumo:
Coarse Grained Reconfigurable Architectures (CGRAs) are emerging as enabling platforms to meet the high performance demanded by modern applications (e.g. 4G, CDMA, etc.). Recently proposed CGRAs offer time-multiplexing and dynamic applications parallelism to enhance device utilization and reduce energy consumption at the cost of additional memory (up to 50% area of the overall platform). To reduce the memory overheads, novel CGRAs employ either statistical compression, intermediate compact representation, or multicasting. Each compaction technique has different properties (i.e. compression ratio, decompression time and decompression energy) and is best suited for a particular class of applications. However, existing research only deals with these methods separately. Moreover, they only analyze the compaction ratio and do not evaluate the associated energy overheads. To tackle these issues, we propose a polymorphic compression architecture that interleaves these techniques in a unique platform. The proposed architecture allows each application to take advantage of a separate compression/decompression hierarchy (consisting of various types and implementations of hardware/software decoders) tailored to its needs. Simulation results, using different applications (FFT, Matrix multiplication, and WLAN), reveal that the choice of compression hierarchy has a significant impact on compression ratio (up to 52%), decompression energy (up to 4 orders of magnitude), and configuration time (from 33 n to 1.5 s) for the tested applications. Synthesis results reveal that introducing adaptivity incurs negligible additional overheads (1%) compared to the overall platform area.
Resumo:
The last decade has witnessed a major shift towards the deployment of embedded applications on multi-core platforms. However, real-time applications have not been able to fully benefit from this transition, as the computational gains offered by multi-cores are often offset by performance degradation due to shared resources, such as main memory. To efficiently use multi-core platforms for real-time systems, it is hence essential to tightly bound the interference when accessing shared resources. Although there has been much recent work in this area, a remaining key problem is to address the diversity of memory arbiters in the analysis to make it applicable to a wide range of systems. This work handles diverse arbiters by proposing a general framework to compute the maximum interference caused by the shared memory bus and its impact on the execution time of the tasks running on the cores, considering different bus arbiters. Our novel approach clearly demarcates the arbiter-dependent and independent stages in the analysis of these upper bounds. The arbiter-dependent phase takes the arbiter and the task memory-traffic pattern as inputs and produces a model of the availability of the bus to a given task. Then, based on the availability of the bus, the arbiter-independent phase determines the worst-case request-release scenario that maximizes the interference experienced by the tasks due to the contention for the bus. We show that the framework addresses the diversity problem by applying it to a memory bus shared by a fixed-priority arbiter, a time-division multiplexing (TDM) arbiter, and an unspecified work-conserving arbiter using applications from the MediaBench test suite. We also experimentally evaluate the quality of the analysis by comparison with a state-of-the-art TDM analysis approach and consistently showing a considerable reduction in maximum interference.
Resumo:
Work in Progress Session, 21st IEEE Real-Time and Embedded Techonology and Applications Symposium (RTAS 2015). 13 to 16, Apr, 2015, pp 27-28. Seattle, U.S.A..
Resumo:
Poster presented in Work in Progress Session, The 28th GI/ITG International Conference on Architecture of Computing Systems (ARCS 2015). 24 to 27, Mar, 2015. Porto, Portugal.
Resumo:
Presented at Work in Progress Session, The 28th GI/ITG International Conference on Architecture of Computing Systems (ARCS 2015). 24 to 27, Mar, 2015. Porto, Portugal.