988 resultados para RU(0001)
Resumo:
Dye-sensitised solar cells have emerged as an important developing technology for low-cost solar energy conversion and a crucial element of these is the dye, responsible for light harvesting and control of interfacial electron-transfer processes.[1] A number of examples of dye exist in the literature which link a ruthenium polypyridyl complex to another platinum group metal complex such as Ru (II), Os (II), Re (I) or Rh (III) via a bridging ligand.[2-6] These systems are often referred to as heterosupramolecular triads when adsorbed on the surface of TiO2 as the semiconductor becomes an active component in the system. A number of problems can arise with these types of sensitisers, for example if a flexible linker, e.g. bis-pyridylethane, is used to couple the two complexes it can be hard to control the orientation of the whole dye. This may lead to the resultant dye cation hole being closer to the surface than desired, and hence the long-lived charge-separated state is not achieved. In addition the size of these dyes may be much larger than that of a mononuclear complex and can lead to poor pore filling on the TiO2 and lower dye coverage, leading to a lower efficiency cell.[7] Despite these issues, efficient charge-separation has been achieved with polynuclear complexes and a long-lived state on the millisecond timescale has been observed for a trinuclear ruthenium complex.[8]
Resumo:
Ab initio density functional theory (DFT) calculations are performed to study the adsorption of H2 molecules on a Ti-doped Mg(0001) surface. We find that two hydrogen molecules are able to dissociate on top of the Ti atom with very small activation barriers (0.103 and 0.145 eV for the first and second H2 molecules, respectively). Additionally, a molecular adsorption state of H2 above the Ti atom is observed for the first time and is attributed to the polarization of the H2 molecule by the Ti cation. Our results parallel recent findings for H2 adsorption on Ti-doped carbon nanotubes or fullerenes. They provide new insight into the preliminary stages of hydrogen adsorption onto Ti-incorporated Mg surfaces.
Resumo:
Ab initio density functional theory (DFT) calculations are performed to explore possible catalytic effects on the dissociative chemisorption of hydrogen on a Mg(0001) surface when carbon is incorporated into Mg materials. The computational results imply that a C atom located initially on a Mg(0001) surface can migrate into the subsurface and occupy an fcc interstitial site, with charge transfer to the C atom from neighboring Mg atoms. The effect of subsurface C on the dissociation of H2 on the Mg(0001) surface is found to be relatively marginal: a perfect sublayer of interstitial C is calculated to lower the barrier by 0.16 eV compared with that on a pure Mg(0001) surface. Further calculations reveal, however, that sublayer C may have a significant effect in enhancing the diffusion of atomic hydrogen into the sublayers through fcc channels. This contributes new physical understanding toward rationalizing the experimentally observed improvement in absorption kinetics of H2 when graphite or single walled carbon nanotubes (SWCNT) are introduced into the Mg powder during ball milling.
Resumo:
In this paper, the dissociative chemisorption of hydrogen on both pure and Ti-incorporated Mg(0001) surfaces are studied by ab initio density functional theory (DFT) calculations. The calculated dissociation barrier of hydrogen molecule on a pure Mg(0001) surface (1.05 eV) is in good agreement with comparable theoretical studies. For the Ti-incorporated Mg(0001) surface, the activated barrier decreases to 0.103 eV due to the strong interaction between the molecular orbital of hydrogen and the d metal state of Ti. This could explain the experimentally observed improvement in absorption kinetics of hydrogen when transition metals have been introduced into the magnesium materials.
Resumo:
Diruthenium (II. III) complexes of the type [Ru-2(O2CAr)(4) (2-mimH)(2)](ClO4) (Ar = C6H4-p-X : X=OMe,1, X=Me, 2, 2-mimH=2-methylimidazole) have been isolated from the reaction of Ru2Cl(O2CAr)(4) with 2-mimH in CH2Cl2 followed by the addition of NaClO4. The crystal structure of 1.1.75CH(2)Cl(2).H2O has been determined. The crystal belongs to the monoclinic space group p2(1)/c with the following unit cell dimensions for the C40H40N4O16ClRu2.1.75CH(2)Cl(2).H2O (M = 1237.0) : a = 12.347(3)Angstrom, b = 17.615(5)Angstrom, c = 26.148(2)Angstrom,beta = 92.88(1)degrees. v = 5679(2)Angstrom(3). Z=4, D-c = 1.45 g cm(-3). lambda(Mo-K-alpha) = 0.7107 Angstrom, mu(Mo-K-alpha) = 8.1 cm(-1), T = 293 K, R = 0.0815 (wR(2) = 0.2118) for 5834 reflections with 1 > 2 sigma(I). The complex has a tetracarboxylatodiruthenium (II, III) core and two axially bound 2-methylimidazole ligands. The Ru-Ru bond length is 2.290(1)Angstrom. The Ru-Ru bond order is 2.5 and the complex is three-electron paramagnetic. The complex shows an irreversible Ru-2(II,III)-->Ru-2(Il,II) reduction near -0.2 V vs SCE in CH2Cl2-0. 1 MTBAP. The complexes exemplify the first adduct of the tetracarboxylatodiruthenium (II,III) core having N-donor ligands
Resumo:
Water adsorbs molecularly on a clean Zn(0001) surface; on a surface covered with atomic oxygen, however, hydroxyl species is produced due to proton abstraction by the surface oxygen atoms. Methanol, molecularly adsorbed on a clean surface at 80 K, transforms to methoxy species above 110 K. On an atomic oxygen-covered surface, adsorbed methanol gives rise to methoxy species and water, the latter arising from proton abstraction. HCHO adsorbs molecularly at 80 K on both clean as well as oxygen-covered surfaces and polymerizes at higher temperatures. Formic acid does not adsorb on a clean Zn surface, but on an oxygen-covered surface gives rise to formate and hydroxyl species.
Resumo:
EELS and XPS studies show the presence of both adsorbed atomic and molecular oxygen at low temperatures. The nature of the oxide layer formed on the surface has been characterized by angular dependent and variable temperature EELS. A loss peak around 550 cm−1 is assigned to an electronic transition.
Resumo:
EELS studies provide definitive evidence for the hydroxylation of oxygen-covered Cu(110) and Zn(0001) surfaces on interaction with proton donor molecules such as H2O, CH3OH, HCOOH, NH3 and (CH3)2NH. The occurrence of surface hydroxylation is unambigouusly shown by a study of the interaction of H2S and HCl with an oxygen covered Cu(110) surface.
Resumo:
Two types of left-handed zig-zag (LZ) helices were obtained following stereochemical guideline. They are referred to as LZ1 and LZ2 helices. LZ1 helices have conformations similar to those found in the single crystals of d(C-G)3 and d(C-G)25,6. Z-character is more prominent in LZ2 than in LZ1 helix. The conformations of a stable link between RU and LZ helical fragments are given. The link involves inverted stacking arrangement of the bases: a characteristic feature of all RL models proposed by us
Resumo:
The complexes, cis-(CO)-trans-(Cl)-[Ru(SRaaiNR)(CO)(2)Cl-2] (2) and trans-(Cl)-[Ru(SRaaiNR)(CO)Cl-2] (3) (SRaaiNR = 1-alkyl-2-{(o-thioalkyl)phenylazo}imidazoles; R = Me (1a) and Et (1b)) have been synthesized and characterized. The structural confirmation is achieved by single crystal X-ray structure determinations. The complexes show Ru(III)/Ru(II) couple and ligand reductions. Electronic structure and spectral properties of the complexes have been explained with the DFT and TDDFT calculation. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A new dicationic dihydrogen complex of the type trans-[(dppe)(2)Ru(eta (2)-H-2)(PF(OMe)(2))]BF4](2) has been prepared and characterized. A large coupling of about 50 Hz between the H-2 and trans-phosphorus ligand in this complex has been observed.