973 resultados para REDUCTASE-SACCHAROPINE DEHYDROGENASE


Relevância:

30.00% 30.00%

Publicador:

Resumo:

11β-hydroxysteroid dehydrogenase type 1 (11β-HSD-1) intracellularly regenerates active corticosterone from circulating inert 11-dehydrocorticosterone (11-DHC) in specific tissues. The hippocampus is a brain structure particularly vulnerable to glucocorticoid neurotoxicity with aging. In intact hippocampal cells in culture, 11β-HSD-1 acts as a functional 11β-reductase reactivating inert 11-DHC to corticosterone, thereby potentiating kainate neurotoxicity. We examined the functional significance of 11β-HSD-1 in the central nervous system by using knockout mice. Aged wild-type mice developed elevated plasma corticosterone levels that correlated with learning deficits in the watermaze. In contrast, despite elevated plasma corticosterone levels throughout life, this glucocorticoid-associated learning deficit was ameliorated in aged 11β-HSD-1 knockout mice, implicating lower intraneuronal corticosterone levels through lack of 11-DHC reactivation. Indeed, aged knockout mice showed significantly lower hippocampal tissue corticosterone levels than wild-type controls. These findings demonstrate that tissue corticosterone levels do not merely reflect plasma levels and appear to play a more important role in hippocampal functions than circulating blood levels. The data emphasize the crucial importance of local enzymes in determining intracellular glucocorticoid activity. Selective 11β-HSD-1 inhibitors may protect against hippocampal function decline with age.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glutamate dehydrogenase (GDH; EC 1.4.1.2-1.4.1.4) catalyses in vitro the reversible amination of 2-oxoglutarate to glutamate. In vascular plants the in vivo direction(s) of the GDH reaction and hence the physiological role(s) of this enzyme remain obscure. A phylogenetic analysis identified two clearly separated groups of higher-plant GDH genes encoding either the alpha- or beta-subunit of the GDH holoenzyme. To help clarify the physiological role(s) of GDH, tobacco (Nicotiana tabacum L.) was transformed with either an antisense or sense copy of a beta-subunit gene, and transgenic plants recovered with between 0.5- and 34-times normal leaf GDH activity. This large modulation of GDH activity (shown to be via alteration of beta-subunit levels) had little effect on leaf ammonium or the leaf free amino acid pool, except that a large increase in GDH activity was associated with a significant decrease in leaf Asp (similar to 51%, P=0.0045). Similarly, plant growth and development were not affected, suggesting that a large modulation of GDH beta-subunit titre does not affect plant viability under the ideal growing conditions employed. Reduction of GDH activity and protein levels in an antisense line was associated with a large increase in transcripts of a beta-subunit gene, suggesting that the reduction in beta-subunit levels might have been due to translational inhibition. In another experiment designed to detect post-translational up-regulation of GDH activity, GDH over-expressing plants were subjected to prolonged dark-stress. GDH activity increased, but this was found to be due more likely to resistance of the GDH protein to stress-induced proteolysis, rather than to post-translational up-regulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we report the results of molybdenum K-edge X-ray absorption studies performed on the oxidized and reduced active sites of the sulfite dehydrogenase from Starkeya novella. Our results provide the first direct structural information on the active site of the oxidized form of this enzyme and confirm the conclusions derived from protein crystallography that the molybdenum coordination is analogous to that of the sulfite oxidases. The molybdenum atom of the oxidized enzyme is bound by two Mo=O ligands at 1.73 angstrom and three thiolate Mo-S ligands at 2.42 angstrom, whereas the reduced enzyme has one oxo at 1.74 angstrom, one long oxygen at 2.19 angstrom (characteristic of Mo-OH2), and three Mo-S ligands at 2.40 angstrom.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ADH (alcohol dehydrogenase) system is one of the earliest known models of molecular evolution, and is still the most studied in Drosophila. Herein, we studied this model in the genus Anastrepha (Diptera, Tephritidae). Due to the remarkable advantages it presents, it is possible to cross species with different Adh genotypes and with different phenotype traits related to ethanol tolerance. The two species studied here each have a different number of Adh gene copies, whereby crosses generate polymorphisms in gene number and in composition of the genetic background. We measured certain traits related to ethanol metabolism and tolerance. ADH specific enzyme activity presented gene by environment interactions, and the larval protein content showed an additive pattern of inheritance, whilst ADH enzyme activity per larva presented a complex behavior that may be explained by epistatic effects. Regression models suggest that there are heritable factors acting on ethanol tolerance, which may be related to enzymatic activity of the ADHs and to larval mass, although a pronounced environmental effect on ethanol tolerance was also observed. By using these data, we speculated on the mechanisms of ethanol tolerance and its inheritance as well as of associated traits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A phytochemical investigation of the ethanolic extract of stalks of Senna martiana Benth. (Leguminoseae), native specie of northeast Brazil, resulted in the isolation and spectroscopic characterization of a new bianthrone glycoside, martianine 1 (10,10'-il-chrysophanol-10-oxi10,10'-bi-glucosyl). Its identification was established by HRMS, IR and 2D NMR experiments. The evaluation of martianine trypanocidal activity was carried out against gliceraldehyde 3-phosphate dehydrogenase enzyme from Trypanosoma cruzi. Its inhibitory constant (Ki) is in the low micromolar concentration and it was determined by isothermal titration calorimetry to be 27.3 ± 2.47 µmol L-1. The non-competitive mechanism is asserted to be putative of the mode of action martianine displays against T. cruzi GAPDH. Results show that martianine has a great potential to become new lead molecule by inhibiting this key enzyme and for the development of new drugs against Chagas disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The inhibitory activity of crude extracts of Meliaceae and Rutaceae plants on glycosomal glyceraldehyde-3-phosphate dehydrogenase (gGAPDH) enzyme from Trypanosoma cruzi was evaluated at 100 μg/mL. Forty-six extracts were tested and fifteen of them showed significant inhibitory activity (IA % > 50). The majority of the assayed extracts of Meliaceae plants (Cedrela fissilis, Cipadessa fruticosa and Trichilia ramalhoi) showed high ability to inhibit the enzymatic activity. The fractionation of the hexane extract from branches of C. fruticosa led to the isolation of three flavonoids: flavone, 7-methoxyflavone and 3',4',5',5,7-pentamethoxyflavone. The two last compounds showed high ability to inhibit the gGAPDH activity. Therefore, the assayed Meliaceae species could be considered as a promising source of lead compounds against Chagas' disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dihydroorotate dehydrogenase (DHODH) catalyzes the oxidation of dihydroorotate to orotate during the fourth step of the de novo pyrimidine synthesis pathway. In rapidly proliferating mammalian cells, pyrimidine salvage pathway is insufficient to overcome deficiencies in that pathway for nucleotide synthesis. Moreover, as certain parasites lack salvage enzymes, relying solely on the de novo pathway, DHODH inhibition has turned out as an efficient way to block pyrimidine biosynthesis. Escherichia coli DHODH (EcDHODH) is a class 2 DHODH, found associated to cytosolic membranes through an N-terminal extension. We used electronic spin resonance (ESR) to study the interaction of EcDHODH with vesicles of 1,2-dioleoyl-sn-glycero-phosphatidylcholine/detergent. Changes in vesicle dynamic structure induced by the enzyme were monitored via spin labels located at different positions of phospholipid derivatives. Two-component ESR spectra are obtained for labels 5- and 1 0-phosphatidylcholine in presence of EcDHODH, whereas other probes show a single-component spectrum. The appearance of an additional spectral component with features related to fast-motion regime of the probe is attributed to the formation of a defect-like structure in the membrane hydrophobic region. This is probably the mechanism used by the protein to capture quinones used as electron acceptors during catalysis. The use of specific spectral simulation routines allows us to characterize the ESR spectra in terms of changes in polarity and mobility around the spin-labeled phospholipids. We believe this is the first report of direct evidences concerning the binding of class 2 DHODH to membrane systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) plays an important role in the life cycle of the Trypanosoma cruzi, and an immobilized enzyme reactor (IMER) has been developed for use in the on-line screening for GAPDH inhibitors. An IMER containing human GAPDH has been previously reported; however, these conditions produced a T. cruzi GAPDH-IMER with poor activity and stability. The factors affecting the stability of the human and T. cruzi GAPDHs in the immobilization process and the influence of pH and buffer type on the stability and activity of the IMERs have been investigated. The resulting T. cruzi GAPDH-IMER was coupled to an analytical octyl column, which was used to achieve chromatographic separation of NAD+ from NADH. The production of NADH stimulated by D-glyceraldehyde-3-phosphate was used to investigate the activity and kinetic parameters of the immobilized T. cruzi GAPDH. The Michaelis-Menten constant (K-m) values determined for D-glyceraldehyde-3-phosphate and NAD(+) were K-m = 0.5 +/- 0.05 mM and 0.648 +/- 0.08 mM, respectively, which were consistent with the values obtained using the non-immobilized enzyme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background/Aim: Hyperhomocysteinemia due to Methylenetetrahydrofolate Reductase (MTHFR) gene, in particular the C677T (Ala222Val) polymorphism were recently associated to steatosis and fibrosis. We analyzed the frequency of MTHFR gene in a cross-sectional study of patients affected by Chronic Hepatitis C (CHC) from Northeast of Brazil. Method: One hundred seven-four untreated patients with CHC were genotyped for the C677T MTHFR. Genomic DNA was extracted from peripheral blood cells and the C677T MTHFR polymorphism was identified by PCR-RFLP. The homocysteine (Hcy) levels were determined by chemiluminescence method. All patients were negative for markers of Wilson's disease, hemochromatosis and autoimmune diseases and have current and past daily alcohol intake less than 100 g/week. Results: Among subjects infected with CHC genotype non-1 the frequency of MTHFR genotypes TT was 9.8% versus 4.4% genotype 1 (p = 0.01). Nevertheless, association was found between the MTHFR genotype TT x CT/CC polymorphism and the degree of steatosis and fibrosis in both hepatitis C genotype (p < 0.05). A significant difference was found on plasma Hcy levels in patients with steatosis regardless of HCV genotype (p = 0.03). Conclusion: Our results indicate that plasma Hcy levels is highly prevalent in subjects with chronic hepatits C with steatosis regardless of HCV genotype and vitamin deficiency. The presence of genotype TT of MTHFR C677T polymorphism was more common in CHC genotype non-1 infected patient regardless of histopathological classification and genotype TT+CT frequencies were significant in the presence of fibrosis grade 1+2 and of steatosis in CHC infected patients from the northeast of Brazil regardless of HCV genotype. The genetic susceptibility of MTHFR C677T polymorphism should be confirmed in a large population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The excess of sugarcane bagasse (SCB) from the sugar-alcohol industry is considered a by-product with great potential for many bioproducts production. This work had as objective to verify the performance of sugarcane bagasse hemicellulosic hydrolysate (SCBHH) as source of sugars for enzymatic or in vitro xylitol production. For this purpose, xylitol enzymatic production was evaluated using different concentrations of treated SCBHH in the commercial reaction media. The weak acid hydrolysis of SCB provided a hydrolysate with 18 g L(-1) and 6 g L(-1) of xylose and glucose, respectively. Considering the reactions, changes at xylose xylitol conversion efficiency and volumetric productivity in xylitol were not observed for the control experiment and using 20 and 40% v.v (1) of SCBHH in the reaction media. The conversion efficiency achieved 100% in all the experiments tested. The results showed that treated SCBHH is suitable as xylose and glucose source for the enzymatic xylitol production and that this process has potential as an alternative for traditional xylitol production ways. (C) 2011 Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this research was to improve Glucose-6-phosphate dehydrogenase (G6PD) production by Saccharomyces cerevisiae W303-181, which carry the plasmid YEpPGK-G6PD, by varying the following cultivation conditions: pH value (4.8, 5.7 and 6.6); inoculum concentration (0.1, 0.6 and 1.1 g/L) and initial glucose concentration (20.0, 30.0 and 40.0 g/L). The effect of those variables on G6PD production capability was studied by the application of response surface statistical analysis. The results showed that the highest G6PD production (1594.2 U/L), specific activity (1189.7 U/g(cell)) and productivity (45.6 U/L.h) occurred at pH 4.8, inoculum concentration of 0.1 g/L and initial glucose concentration of 20.0 g/L, under agitation of 150 rpm at 30 degrees C after 36 h. In this work, the strain expressed about 21 fold more activity than the wild S. cerevisiae strain, being an attractive and promising new source of this enzyme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spent sulfite pulping liquor (SSL) contains lignin, which is present as lignosulfonate, and hemicelluloses that are present as hydrolyzed carbohydrates. To reduce the biological oxygen demand of SSL associated with dissolved sugars, we studied the capacity of Pichia stipitis FPL-YS30 (xyl3 Delta) to convert these sugars into useful products. FPL-YS30 produces a negligible amount of ethanol while converting xylose into xylitol. This work describes the xylose fermentation kinetics of yeast strain P.stipitis FPL-YS30. Yeast was grown in rich medium supplemented with different carbon sources: glucose, xylose, or ammonia-base SSL. The SSL and glucose-acclimatized cells showed similar maximum specific growth rates (0.146 h(-1)). The highest xylose consumption at the beginning of the fermentation process occurred using cells precultivated in xylose, which showed relatively high specific activity of glucose-6-phosphate dehydrogenase (EC 1.1.1.49). However, the maximum specific rates of xylose consumption (0.19 g(xylose)/g(cel) h) and xylitol production (0.059 g(xylitol)/g(cel) h) were obtained with cells acclimatized in glucose, in which the ratio between xylose reductase (EC 1.1.1.21) and xylitol dehydrogenase (EC 1.1.1.9) was kept at higher level (0.82). In this case, xylitol production (31.6 g/l) was 19 and 8% higher than in SSL and xylose-acclimatized cells, respectively. Maximum glycerol (6.26 g/l) and arabitol (0.206 g/l) production were obtained using SSL and xylose-acclimatized cells, respectively. The medium composition used for the yeast precultivation directly reflected their xylose fermentation performance. The SSL could be used as a carbon source for cell production. However, the inoculum condition to obtain a high cell concentration in SSL needs to be optimized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Xylitol enzymatic production can be an alternative to chemical and microbial processes, because of advantages like higher conversion efficiency. However, for an adequate conversion, it is necessary to investigate the effect of many parameters, such as buffer initial concentration, pH, temperature, agitation, etc. In this context, the objective of this work was to evaluate xylitol enzymatic production under different Tris buffer initial concentrations in order to determine the best condition for this parameter to begin the reaction. The best results were obtained when Tris buffer initial concentration was 0.22 M, reaching 0.31 g L(-1) h(-1) xylitol volumetric productivity with 99% xylose-xylitol conversion efficiency. Although the increase in buffer concentration allowed better pH maintenance, it hindered the catalysis. The results demonstrate that this bioreaction is greatly influenced by involved ions concentrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Ascorbic acid is a very important compound for plants. It has essential functions, mainly as an antioxidant and growth regulator. Ascorbic acid biosynthesis has been extensively studied, but studies in fruits are very limited. In this work we studied the influence of five enzymes involved in synthesis (L-galactono-1,4-lactone dehydrogenase, GalLDH, EC 1.3.2.3), oxidation (ascorbate oxidase, EC 1.10.3.3, and ascorbate peroxidase, APX, EC and recycling (monodehydroascorbate reductase, EC 1.6.5.4, and dehydroascorbate reductase, DHAR, EC 1.8.5.1) on changes in ascorbic acid content during development and ripening of mangoes (Mangifera indica L. cv. Keitt) and during the ripening of white pulp guavas (Psidium guayava L. cv. Paloma). RESULTS: It was found that there was a balance between the activities of GalLDH, APX and DHAR, both in mangoes and guavas. CONCLUSIONS: Equilibrium between the enzymatic activities of synthesis, catabolism and recycling is important for the regulation of ascorbic acid content in mango and guava. These results have contributed to understanding some of the changes that occur in ascorbic acid levels during fruit ripening. (C) 2008 Society of Chemical Industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemopreventive activities of the dietary isoprenoids beta-ionone (beta I) and geraniol (GOH) were evaluated during the promotion phase of hepatocarcinogenesis. Over 5 consecutive weeks, rats received daily 16 mg/100 g body weight (b.w.) of beta I (beta I group), 25 mg/100 g b.w. of GOH (GOH group), or only corn oil (CO group, controls). Compared to the CO group, the following was observed: only the beta I group showed a decrease in the mean number of visible hepatocyte nodules (P<.05); beta I and GOH groups had reduced mean number of persistent preneoplastic lesions (pPNLs) (P<.05), but no differences regarding number of remodeling PNL (rPNLs) were observed; only the beta I group exhibited smaller rPNL size and percentage of liver sections occupied by pPNLs (P<.05), whereas the GOH group displayed a smaller percentage of liver sections occupied by rPNLs (P<.05); a trend was observed in the beta I group, which showed reduced cell proliferation of pPNLs (P<.10), and the GOH group had increased apoptosis in pPNLs and rPNLs (P<.05); only the beta I group displayed reduced total plasma cholesterol concentrations (P<.05) and increased hepatic 3-hydroxy-3-methylglutaryl coenzyme A (HMGCoA) reductase mRNA levels (P<.05): only the GOH group had lower hepatic membrane RhoA protein levels (P<.05); both the beta I- and GOH-treated groups had higher hepatic concentrations of beta I and GOH, respectively (P<.05). Given these data, beta I and GOH show promising chemopreventive effects during promotion of hepatocarcinogenesis by acting through distinct mechanism of actions: beta I may inhibit cell proliferation and modulate HMGCoA reductase, and GOH can induce apoptosis and inhibit RhoA activation. (C) 2011 Elsevier Inc. All rights reserved.