995 resultados para RAT HYPOTHALAMUS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intracerebroventricular (ICV) administration of bombesin (BN) induces a syndrome characterized by stereotypic locomotion and grooming, hyperactivity and sleep elimination, hyperglycemia and hypothermia, hyperhemodynamics, feeding inhibition, and gastrointestinal function changes. Mammalian BN-like peptides (MBNs), e.g. gastrin-releasing peptide (GRP), Neuromedin C (NMC), and Neuromedin B (NMB), have been detected in the central nervous system. Radio-labeled BN binds to specific sites in discrete cerebral regions. Two specific BN receptor subtypes (GRP receptor and NMB receptor) have been identified in numerous brain regions. The quantitative 2-[14C]deoxyglucose ([14C]20G) autoradiographic method was used to map local cerebral glucose utilization (LCGU) in the rat brain following ICV injection of BN (vehicle, BN O.1Jlg, O.5Jlg). At each dose, experiments were conducted in freely moving or restrained conditions to determine whether alterations in cerebral function were the result of BN central administration, or were the result of BN-induced motor stereotypy. The anteroventral thalamic nucleus (AV) (p=O.029), especially its ventrolateral portion (AVVL) (prates of metabolism under both restraint conditions. The effect was treatment dependent without interaction of the restraint conditions. Of all the regions that were reported to have high densities of BN receptors, the internal granular layer of the olfactory bulb (IGr) (p=O.028), and the suprachiasmatic nucleus (SCh) (p=O.003) exhibited BN treatment effects. BN effects on LCGU were also observed in the median eminence (ME) (p=O.011). Restraint, however, decreased LCGU in the lateral dorsal thalamic nucleus, ventrolateral and dorsomedial parts (LOVL and LOOM) (p=O.044, p=O.009), and the lateral geniculate (LG) (p=O.027). In sum, BN induced a marked and highly localized alteration in cerebral metabolism within parts of the anterior thalamus, which is the principle relay in the limbic circuitry. BN effects were also observed in IGr, Mi, SCh, and ME. Effects of restraint were found in LOVL, LOOM, and LG. It is suggested that increased LCGU in AV and AVVL may be the result of functional change in the limbic circuitry and the hypothalamus caused by BN receptor functional modification. In IGr, increased LCGU following BN administration is considered to be mainly the result the activation of NMB receptor, a subtype of BN receptors. In SCh, increased LCGU is believed to be caused both by BN effects on the thalamic, the hypothalamic, and the limbic functions and by activation of GRP receptor, another BN receptors subtype found in SCh. In ME, increased LCGU is suggested to be caused by BN effects on the hypothalamic functions, especially those related to the neuroendocrine functions. None of the alterations seen in these regions reflects the emission of stereotyped motor behaviors. Rather, they reflect a direct influence of BN central administration upon functioning of the cerebral regions influenced by BN administration. The restraint effects seen in LO, including LOOM and LOVL, are suggested to be the result of altered behavioral expression. The restraint effects seen in LG is suggested to be the result of reduced locomotion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work is an attempt to understand the role of 5-HT, 5-HT1A and 5-HT2C receptors in the regulation of liver cell proliferation using in vivo and in vitro models. The work also focuses on the brain serotonergic changes associated with hapatocyte proliferation and apoptosis to delineate its regulatory function. The investigation of mechanisms involving different models of hepatocyte proliferation contributes to our knowledge about serotonergic regulation of cell growth, apoptosis and carcinogenesis of liver. The study reveals that the alteration of the 5-HT1A and 5-HT2C receptor function and gene expression in the brain stem, cerebral cortex and hypothalamus play an important role in the sympathetic regulation of cell proliferation, neoplastic transformation and apoptosis. The functional balance between 5-HT1A and 5-HT2C receptor plays an important role in regulating hepatocyte proliferation, neoplastic transformation and hepatic apoptosis. The regulatory role of 5-HT1A and 5-HT2C receptor during neoplastic transformation and apoptosis could lead to possible therapeutic intervention in the treatment of cancers and have immense clinical importance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The binding of (-)[ 3H ]dihydroalprenolol , an antagonist of norepinephrine , to $-adrenergic receptors in different regions of the brain of male and female rats of various ages was measured . The binding to the synaptosomal fraction of corpus striatum , hypothalamus, cerebral cortex, cerebellum and the brainstems shows a significant decrease in the binding in old rats of both sexes . Only in the female corpus striatal region, the binding in the adult and the old is the same . In the case of females, the highest binding is seen in the young. In the male, an increase in binding occurs up to adulthood , after which it declines, suggesting a definite sex-related difference in the Q-adrenergic receptor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present thesis is an attempt to understand the role of GABA, GABAA and GABAB receptors in the regulation of liver cell proliferation using in vivo and in vitro models. The work also focuses on the brain GABAergic changes associated with normal and neoplastic cell growth in liver and to delineate its regulatory function. The investigation of mechanisms involving mitogenic models without cell necrosis may contribute our knowledge about both on cell growth, carcinogenesis, liver pathology and treatment. Objectives of the present study are, to induce controlled liver cell proliferation by partial hepatectomy and lead nitrate administration and uncontrolled cell proliferation by N-nitrosodiethylamine treatment in male Wistar rats, the changes in the content of GABA, GABAA,GABAB in various rat brain regions. To study the GABAA and GABAB receptor changes in brain stem, hypothalamus, cerebellum and cerebral cortex during the active cortex during the period of active DNA synthesis in liver of different experimental groups. The changes in GABAA and GABAB receptor function of the brain stem, hypothalamus and cerebellum play an important role sympathetic regulation of cell proliferation and neoplastic growth in liver. The decrease in GABA content in brain stem, hypothalamus and cerebellum during regeneration and neoplasia in liver. The time course of brain GABAergic changes was closely correlated with that of heptic DNA synthesis. The functional significance of these changes was further explored by studying the changes in GABAA and GABAB receptors in brain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Both the estrogen receptor (ER) and thyroid hormone receptor (TR) are members of the nuclear receptor superfamily. Two isoforms of the ER, alpha and beta, exist. The TRalpha and beta isoforms are products of two distinct genes that are further differentially spliced to give TRalpha1 and alpha2, TRbeta1 and beta2. The TRs have been shown to interfere with ER-mediated transcription from both the consensus estrogen response element (ERE) and the rat preproenkephalin (PPE) promoter, possibly by competing with ER binding to the ERE or by squelching coactivators essential for ER-mediated transcription. The rat oxytocin receptor (OTR) gene is thought to be involved in several facets of reproductive and affiliative behaviors. 17beta-Estradiol-bound ERs upregulate the OTR gene in the ventromedial hypothalamus, a region critical for the induction of lordosis behavior in several species. We investigated the effects of the ligand-binding TR isoforms on the ER-mediated transcription from a physiological promoter of a behaviorally relevant gene such as the OTR. Only ERalpha could induce the OTR gene in two cell lines tested, the CV-1 and the SK-N-BE2C neuroblastoma cell lines. ERbeta was incapable of inducing the gene in either cell line. ERalpha is therefore not equivalent to ERbeta on this physiological promoter. Indeed, in the neural cell line, ERbeta can inhibit ERalpha-mediated induction from the OTR promoter. While the TRalpha1 isoform inhibited ERalpha-mediated induction in the neural cell line, the TRbeta1 isoform stimulated induction, thus demonstrating isoform specificity in the interaction. The use of a DNA-binding mutant, the TR P box mutant, showed that inhibition of ERalpha-mediated induction of the rat OTR gene promoter by the TRalpha1 isoform does not require DNA-binding ability. SRC-1 overexpression relieved TRalpha1-mediated inhibition in both cell lines, suggesting that squelching for coactivators is an important molecular mechanism in TRalpha-mediated inhibition. Such interactions between TR and ER isoforms on the rat OTR promoter provide a mechanism to achieve neuroendocrine integration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cocaine- and amphetamine-regulated transcript (CART) is widespread in the rodent brain. CART has been implicated in many different functions including reward, feeding, stress responses, sensory processing, learning and memory formation. Recent studies have suggested that CART may also play a role in neural development. Therefore, in the present study we compared the distribution pattern and levels of CART mRNA expression in the forebrain of male and female rats at different stages of postnatal development: P06, P26 and P66. At 6 days of age (P06), male and female rats showed increased CART expression in the somatosensory and piriform cortices, indusium griseum, dentate gyrus, nucleus accumbens, and ventral premammillary nucleus. Interestingly, we found a striking expression of CART mRNA in the ventral posteromedial and ventral posterolateral thalamic nuclei. This thalamic expression was absent at P26 and P66. Contrastingly, at P06 CART mRNA expression was decreased in the arcuate nucleus. Comparing sexes, we found increased CART mRNA expression in the anteroventral periventricular nucleus of adult females. In other regions including the CA1, the lateral hypothalamic area and the dorsomedial nucleus of the hypothalamus, CART expression was not different comparing postnatal ages and sexes. Our findings indicate that CART gene expression is induced in a distinct temporal and spatial manner in forebrain sites of male and female rats. They also suggest that CART peptide participate in the development of neural pathways related to selective functions including sensory processing, reward and memory formation. (C) 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Effective defense against natural threats in the environment is essential for the survival of individual animals. Thus, instinctive behavioral responses accompanied by fear have evolved to protect individuals from predators and from opponents of the same species (dominant conspecifics). While it has been suggested that all perceived environmental threats trigger the same set of innately determined defensive responses, we tested the alternate hypothesis that different stimuli may evoke differentiable behaviors supported by distinct neural circuitry. The results of behavioral, neuronal immediate early gene activation, lesion, and neuroanatomical experiments indicate that the hypothalamus is necessary for full expression of defensive behavioral responses in a subordinate conspecific, that lesions of the dorsal premammillary nucleus drastically reduce behavioral measures of fear in these animals, and that essentially separate hypothalamic circuitry supports defensive responses to a predator or a dominant conspecific. It is now clear that differentiable neural circuitry underlies defensive responses to fear conditioning associated with painful stimuli, predators, and dominant conspecifics and that the hypothalamus is an essential component of the circuitry for the latter two stimuli.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Type 2 diabetes mellitus results from the complex association of insulin resistance and pancreatic beta-cell failure. Obesity is the main risk factor for type 2 diabetes mellitus, and recent studies have shown that, in diet-induced obesity, the hypothalamus becomes inflamed and dysfunctional, resulting in the loss of the perfect coupling between caloric intake and energy expenditure. Because pancreatic beta-cell function is, in part, under the control of the autonomic nervous system, we evaluated the role of hypothalamic inflammation in pancreatic islet function. In diet-induced obesity, the earliest markers of hypothalamic inflammation are present at 8 weeks after the beginning of the high fat diet; similarly, the loss of the first phase of insulin secretion is detected at the same time point and is restored following sympathectomy. Intracerebroventricular injection of a low dose of tumor necrosis factor a leads to a dysfunctional increase in insulin secretion and activates the expression of a number of markers of apoptosis in pancreatic islets. In addition, the injection of stearic acid intracerebroventricularly, which leads to hypothalamic inflammation through the activation of tau-like receptor-4 and endoplasmic reticulum stress, produces an impairment of insulin secretion, accompanied by increased expression of markers of apoptosis. The defective insulin secretion, in this case, is partially dependent on sympathetic signal-induced peroxisome proliferator receptor-gamma coactivator Delta a and uncoupling protein-2 expression and is restored after sympathectomy or following PGC1 alpha expression inhibition by an antisense oligonucleotide. Thus, the autonomic signals generated in concert with hypothalamic inflammation can impair pancreatic islet function, a phenomenon that may explain the early link between obesity and defective insulin secretion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxidative stress is considered a possible molecular mechanism involved in Pb neurotoxicity. Considering the vulnerability of the developing brain to Pb neurotoxicity, this study was carried out to investigate the effects of low-level developmental Pb exposure on brain regions antioxidant enzymes activities. Wister dams were exposed to 500 ppm of Pb, as Pb acetate, or to 660 ppm Na acetate in the drinking water during pregnancy and lactation. The activities of superoxide dismutase (SOD), glutathione peroxidase and glutathione reductase were determined in the hypothalamus, hippocampus and striatum of male pups at 23 (weaned) or 70 days (adult) of age. In the Pb-exposed 23-day-old pups, the activity of SOD was decreased in the hypothalamus. Regarding adults, there was no significant treatment effect in any of the enzymes and regions evaluated. Based on the present results, it seems that oxidative stress due to decreased antioxidant function may occur in weaned rats but it is suggested that this should not be the main mechanism involved in the neurotoxicity of low-level Pb exposure. (C) 2001 Elsevier B.V. Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of exposure to lead on endocrine function and the reproductive parameters were studied in pubertal rats treated with 1.0 g l(-1) lead acetate in drinking water for 20 days (subacute group) or 9 months (chronic group) in addition to i.v. injections of lead acetate (0.1 mg 100 g(-1) body wt.) every 10 (subacute group) or 15 days (chronic group). Although basal levels of testosterone were higher both in plasma and in testes of acutely intoxicated animals, the circulating levels of luteinizing hormone (LH) were not affected in either group, nor was the LH-releasing hormone content of the median eminence. The density of [I-125]LH/human chorionic gonadotrophin (hCG) binding sites in testicular homogenates was reduced by saturnism in both groups, concomitant with a significantly increased apparent affinity constant of the hormone-receptor complex. These data can be viewed as the result of a mixture of specific lead toxicity (e.g. at the enzyme level) with other more general actions (e.g. at the level of the hypothalamus-pituitary-testicular axis).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study we investigated the influence of a ventromedial hypothalamus (VMH) lesion with ibotenic acid on water and sodium intake and presser responses induced by combined treatment of the median preoptic nucleus (MnPO) with angiotensin Il (ANG II) and adrenergic agonists (phenylephrine, norepinephrine, isoproterenol and clonidine). Male Holtzman rats with a stainless steel cannula implanted into the MnPO and bilateral sham (vehicle) or VMH lesions with ibotenic acid were used. The ingestion of water and sodium and mean arterial pressure (MAP) were determined in separate groups submitted to sodium depletion with the diuretic furosemide (20 mg/rat). ANG II (10 pmol) injection into the MnPO of sham-lesioned rats induced water and sodium intake and presser responses. VMH-lesion reduced ANG II-induced water intake and increased saline intake, In sham rats phenylephrine (80 nmol) into MnPO increased, whereas norepinephrine (80 nmol) and clonidine (40 nmol) reduced ANG II-induced water intake while sodium intake was reduced only by clonidine into MnPO. In VMH-lesioned rats, phenylephrine reduced, noradrenaline increased and clonidine produced no effect on ANG II-induced water intake. In lesioned rats ANG II-induced sodium intake was reduced by phenylephrine and noradrenaline, whereas clonidine produced no change. ANG II-induced presser response was reduced in VMH-lesioned rats, but the presser response combining ANG II and phenylephrine or noradrenaline in VMH-lesioned rats was bigger than sham rats. These results show that the VMH is important for the changes in water and sodium intake and cardiovascular responses induced by angiotensinergic and adrenergic activation of the MnPO. (C) 1997 Elsevier B.V. B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study examined the effects of letrozole exposure during brain sexual differentiation on endocrine, behavioural and neurochemical parameters in male rat descendants. Pregnant female rats received 1 mg kg(-1) day(-1) letrozole or vehicle by oral gavage on gestational Days 21 and 22. Exposure to letrozole reduced anogenital distance in males on postnatal Day (PND) 22. At adulthood (PND 75), plasma testosterone levels and hypothalamic dopaminergic activity were increased, but sexual competence was impaired, because fewer successful sexual behaviours (mount, intromission and principally ejaculation) were observed. The impairment of reproductive function by prenatal exposure to an aromatase inhibitor reinforces the importance of adequate oestrogenic activity during perinatal sexual differentiation for complete masculinisation of the hypothalamus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of sodium and potassium excretion after intrahypothalamic administration of two α-adrenoceptor agonists and the effect of α-adrenoceptor antagonists were studied in groups of rats. Prazosin was equally effective at blocking the natriuretic and kaliuretic responses to the α1-adrenoceptor agonist phenylephrine and the mixed α1/α2-adrenoceptor agonist noradrenaline, while yohimbine which acts preferentially on α2-adrenoceptors was effective in potentiating these responses. These results suggest the presence of two types of α-adrenoceptors for the modulation of ventromedial hypothalamic pathways that interfere with the regulation of the two cations: stimulation of α1-adrenoceptors facilitates, while stimulation of α2-adrenoceptors inhibits the excretion of the ions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many experiments have been performed to evaluate the physiological role of catecholaminergic mechanisms of gonadotropin release. The purpose of the present study was to determine the concentration of β-adrenoreceptors in the remaining (right) cerebral cortex and in right and left hypothalamic halves of hemi-decorticated female rats which exhibited elevated plasma gonadotropin levels as observed previously. The density of β-receptors was measured using a high-affinity β-adrenergic ligand, iodocyanopindolol (ICYP). Scatchard estimates were obtained for maximum binding (B(max) fmol/mg of tissues) from pooled cerebral cortical and hypothalamic tissue of animals under several experimental conditions after hemi-decortication and sham operation. There was an increase in β-adrenoreceptor density in the remaining (right) cerebral cortex at all times examined in hemi-decorticate in comparison with the sham-operated animals (7 days, +10.9%; 21 days, +8.4%; 90 days, +22%; and 90 days plus ovariectomy, +34.8%). The number of β-adrenoreceptors in the right hypothalamic half in hemi-decorticates decreased at 21 days (-42.20%) and then increased at 90 days (+76.63%) and 90 days plus ovariectomy (+51.75%) when compared with the left hypothalamic half. At the same time there were no significant changes in the sham-operated animals when comparing the receptor density in the right and left hypothalamic halves, respectively. Thus, our results suggest a direct adrenergic pathway by which the left cortex can influence the right cortex and a crossed pathway to the contralateral hypothalamus changing adrenergic activity which can alter the β-adrenergic receptor binding capacity in the hypothalamus.