942 resultados para Protective Antigen


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Salmonella enterica is an important enteric pathogen and its various serovars are involved in causing both systemic and intestinal diseases in humans and domestic animals. The emergence of multidrug-resistant strains of Salmonella leading to increased morbidity and mortality has further complicated its management. Live attenuated vaccines have been proven superior over killed or subunit vaccines due to their ability to induce protective immunity. Of the various strategies used for the generation of live attenuated vaccine strains, focus has gradually shifted towards manipulation of virulence regulator genes. Hfq is a RNA chaperon which mediates the binding of small RNAs to the mRNA and assists in post-transcriptional gene regulation in bacteria. In this study, we evaluated the efficacy of the Salmonella Typhimurium Dhfq strain as a candidate for live oral vaccine in murine model of typhoid fever. Salmonella hfq deletion mutant is highly attenuated in cell culture and animal model implying a significant role of Hfq in bacterial virulence. Oral immunization with the Salmonella hfq deletion mutant efficiently protects mice against subsequent oral challenge with virulent strain of Salmonella Typhimurium. Moreover, protection was induced upon both multiple as well as single dose of immunizations. The vaccine strain appears to be safe for use in pregnant mice and the protection is mediated by the increase in the number of CD4(+) T lymphocytes upon vaccination. The levels of serum IgG and secretory-IgA in intestinal washes specific to lipopolysaccharide and outer membrane protein were significantly increased upon vaccination. Furthermore, hfq deletion mutant showed enhanced antigen presentation by dendritic cells compared to the wild type strain. Taken together, the studies in murine immunization model suggest that the Salmonella hfq deletion mutant can be a novel live oral vaccine candidate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Innovative vaccines against typhoid and other Salmonella diseases that are safe, effective, and inexpensive are urgently needed. In order to address this need, buoyant, self-adjuvating gas vesicle nanoparticles (GVNPs) from the halophilic archaeon Halobacterium sp. NRC-1 were bioengineered to display the highly conserved Salmonella enterica antigen SopB, a secreted inosine phosphate effector protein injected by pathogenic bacteria during infection into the host cell. Two highly conserved sopB gene segments near the 3'-coding region, named sopB4 and B5, were each fused to the gvpC gene, and resulting GVNPs were purified by centrifugally accelerated flotation. Display of SopB4 and B5 antigenic epitopes on GVNPs was established by Western blotting analysis using antisera raised against short synthetic peptides of SopB. Immunostimulatory activities of the SopB4 and B5 nanoparticles were tested by intraperitoneal administration of recombinant GVNPs to BALB/c mice which had been immunized with S. enterica serovar Typhimurium 14028 Delta pmrG-HM-D (DV-STM-07), a live attenuated vaccine strain. Proinflammatory cytokines IFN-gamma, IL-2, and IL-9 were significantly induced in mice boosted with SopB5-GVNPs, consistent with a robust Th1 response. After challenge with virulent S. enterica serovar Typhimurium 14028, bacterial burden was found to be diminished in spleen of mice boosted with SopB4-GVNPs and absent or significantly diminished in liver, mesenteric lymph node, and spleen of mice boosted with SopB5-GVNPs, indicating that the C-terminal portions of SopB displayed on GVNPs elicit a protective response to Salmonella infection in mice. SopB antigen-GVNPs were found to be stable at elevated temperatures for extended periods without refrigeration in Halobacterium cells. The results all together show that bioengineered GVNPs are likely to represent a valuable platform for the development of improved vaccines against Salmonella diseases. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Salmonella enterica serovar Typhi, the agent of typhoid fever in humans, expresses the surface Vi polysaccharide antigen that contributes to virulence. However, Vi expression can also be detrimental to some key steps of S. Typhi infectivity, for example, invasion, and Vi is the target of protective immune responses. We used a strain of S. Typhimurium carrying the whole Salmonella pathogenicity island 7 (SPI-7) to monitor in vivo Vi expression within phagocytic cells of mice at different times after systemic infection. We also tested whether it is possible to modulate Vi expression via the use of in vivo-inducible promoters and whether this would trigger anti-Vi antibodies through the use of Vi-expressing live bacteria. Our results show that Vi expression in the liver and spleen is downregulated with the progression of infection and that the Vi-negative population of bacteria becomes prevalent by day 4 postinfection. Furthermore, we showed that replacing the natural tviA promoter with the promoter of the SPI-2 gene ssaG resulted in sustained Vi expression in the tissues. Intravenous or oral infection of mice with a strain of S. Typhimurium expressing Vi under the control of the ssaG promoter triggered detectable levels of all IgG subclasses specific for Vi. Our work highlights that Vi is downregulated in vivo and provides proof of principle that it is possible to generate a live attenuated vaccine that induces Vi-specific antibodies after single oral administration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vibrio harveyi is an important marine pathogen that can infect a number of aquaculture species. V. harveyi degQ (degQ(Vh)), the gene encoding a DegQ homologue, was cloned from T4, a pathogenic V. harveyi strain isolated from diseased fish. DegQ(Vh) was closely related to the HtrA family members identified in other Vibrio species and could complement the temperature-sensitive phenotype of an Escherichia coli strain defective in degP. Expression of degQVh in T4 was modulated by temperature, possibly through the sigma(E)-like factor. Enzymatic analyses demonstrated that the recombinant DegQVh protein expressed in and purified from E. coli was an active serine protease whose activity required the integrity of the catalytic site and the PDZ domains. The optimal temperature and pH of the recombinant DegQVh protein were 50 C and pH 8.0. A vaccination study indicated that the purified recombinant DegQVh was a protective immunogen that could confer protection upon fish against infection by V. harveyi. In order to improve the efficiency of DegQVh as a vaccine, a genetic construct in the form of the plasmid pAQ1 was built, in which the DNA encoding the processed DegQVh protein was fused with the DNA encoding the secretion region of AgaV, an extracellular beta-agarase. The E.coli strain harboring pAQ1 could express and secrete the chimeric DegQVh protein into the culture supernatant. Vaccination of fish with viable E. coli expressing chimeric degQ(Vh) significantly (P < 0.001) enhanced the survival of fish against V. harveyi challenge, which was possibly due to the relatively prolonged exposure of the immune system to the recombinant antigen produced constitutively, albeit at a gradually decreasing level, by the carrier strain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vibrio harveyi is an important marine pathogen that can infect a number of aquaculture species. V. harveyi degQ (degQ(Vh)), the gene encoding a DegQ homologue, was cloned from T4, a pathogenic V. harveyi strain isolated from diseased fish. DegQ(Vh) was closely related to the HtrA family members identified in other Vibrio species and could complement the temperature-sensitive phenotype of an Escherichia coli strain defective in degP. Expression of degQVh in T4 was modulated by temperature, possibly through the sigma(E)-like factor. Enzymatic analyses demonstrated that the recombinant DegQVh protein expressed in and purified from E. coli was an active serine protease whose activity required the integrity of the catalytic site and the PDZ domains. The optimal temperature and pH of the recombinant DegQVh protein were 50 C and pH 8.0. A vaccination study indicated that the purified recombinant DegQVh was a protective immunogen that could confer protection upon fish against infection by V. harveyi. In order to improve the efficiency of DegQVh as a vaccine, a genetic construct in the form of the plasmid pAQ1 was built, in which the DNA encoding the processed DegQVh protein was fused with the DNA encoding the secretion region of AgaV, an extracellular beta-agarase. The E.coli strain harboring pAQ1 could express and secrete the chimeric DegQVh protein into the culture supernatant. Vaccination of fish with viable E. coli expressing chimeric degQ(Vh) significantly (P < 0.001) enhanced the survival of fish against V. harveyi challenge, which was possibly due to the relatively prolonged exposure of the immune system to the recombinant antigen produced constitutively, albeit at a gradually decreasing level, by the carrier strain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ferric uptake regulator (Fur) is a global transcription regulator that is ubiquitous to Gram-negative bacteria and regulates diverse biological processes, including iron uptake, cellular metabolism, stress response, and production of virulence determinants. As a result, for many pathogenic bacteria, Fur plays a crucial role in the course of infection and disease development. In this study, the fur gene was cloned from a pathogenic Pseudomonas fluorescens strain, TSS, isolated from diseased Japanese flounder cultured in a local farm. TSS Fur can partially complement the defective phenotype of an Escherichia coli fur mutant. A TSS fur null mutant, TFM, was constructed. Compared to TSS, TFM exhibits reduced growth ability, aberrant production of outer membrane proteins, decreased resistance against host serum bactericidal activity, impaired ability to disseminate in host blood and tissues, and drastic attenuation in overall bacterial virulence in a Japanese flounder infection model. When used as a live vaccine administered via the injection, immersion, and oral routes, TFM affords high levels of protection upon Japanese flounder against not only P.fluorescens infection but also Aeromonas hydrophila infection. Furthermore, a plasmid, pJAQ, was constructed, which expresses the coding element of the Vibrio harveyi antigen AgaV-DegQ. TFM harboring pJAQ can secret AgaV-DegQ into the extracellular milieu. Vaccination of Japanese flounder with live TFM/pJAQ elicited strong immunoprotection against both V. harveyi and A. hydrophila infections. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Edwardsiella tarda is the etiological agent of edwardsiellosis, a systematic disease that affects a wide range of marine and freshwater fish cultured worldwide. In order to identify E. tarda antigens with vaccine potential, we in this study conducted a systematic search for E. tarda proteins with secretion capacity. One of the proteins thus identified was Esa1, which contains 795 amino acid residues and shares extensive overall sequence identities with the D15-like surface antigens of several bacterial species. In silico analyses indicated that Esa1 localizes to outer membrane and possesses domain structures that are conserved among bacterial surface antigens. The vaccine potential of purified recombinant Esa1 was examined in a Japanese flounder (Paralichthys olivaceus) model, which showed that fish vaccinated with Esa1 exhibited a high level of survival and produced specific serum antibodies. Passive immunization of naive fish with antisera raised against Esa1 resulted in significant protection against E. tarda challenge. Taking advantage of the secretion capacity of Esa1 and the natural gut-colonization ability of a fish commensal strain, we constructed an Esa1-expressing recombinant strain, FP3/pJsa1. Western immunoblot and agglutination analyses showed that FP3/pJsa1 produces outer membrane-localized Esa1 and forms aggregates in the presence of anti-Esa1 antibodies. Vaccination analyses showed that FP3/pJsa1 as an intraperitoneal injection vaccine and an oral vaccine embedded in alginate microspheres produced relative percent survival rates of 79% and 52%, respectively, under severe challenging conditions that resulted in 92-96% mortality in control fish. Further analyses showed that following oral vaccination, FP3/pJsa1 was able to colonize in the gut but unable to disseminate into other tissues. Together these results indicate that Esa1 is a protective immunogen and an effective oral vaccine when delivered by FP3/pJsa1 as a surface-anchored antigen. (c) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Excretory secretory products (ESP) of Schistosoma mansoni developing larvae are ideal potential vaccines as such molecules may readily induce host primary immune responses, and local memory immune response effectors that would target, surround, and pursue the larvae while negotiating the lung blood capillaries. We herein characterized the cytokines response ESP, e.g., SG3PDH, 14-3-3-like protein, TPX, and calpain induce in the natural context of infection, and defined the global cytokine profile conducive to effective schistosome larvae killing. Accordingly, spleen cells (SC) taken from naive, and 7-, or 9-day S. mansoni-infected mice were stimulated in vitro with the selected ESP, in a recombinant or multiple antigen peptide (MAP) form, and examined for production of T helper type (Th) 1, Th2, and Th17 cytokines, and the ability to mediate in vitro attrition of lung-stage schistosomula. The study indicated that larval ESP principally elicit Th1 and Th17 type cytokines. Recombinant SG3PDH was the only test ESP to additionally activate SC from S. mansoni-infected BALB/c mice to release higher IL-4 levels than unstimulated SC and mediate significant (P

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dendritic cells (DCs) of the skin play an important role in skin-mediated immunity capable of promoting potent immune responses. We availed of polymeric dissolving microneedle (MN) arrays laden with nano-encapsulated antigen to specifically target skin DC networks. This modality of immunization represents an economic, efficient and potent means of antigen delivery directly to skin DCs, which are inefficiently targeted by more conventional immunization routes. Following MN immunization, Langerhans cells (LCs) constituted the major skin DC subset capable of cross-priming antigen-specific CD8(+) T cells ex-vivo. While all DC subsets were equally efficient in priming CD4(+) T cells, LCs were largely responsible for orchestrating the differentiation of CD4(+) IFN-γ and IL-17 producing effectors. Importantly, depletion of LCs prior to immunization had a profound effect on CD8(+) CTL responses in vivo, and vaccinated animals displayed reduced protective anti-tumour and viral immunity. Interestingly, this cross-priming bias was lost following MN immunization with soluble antigen, suggesting that processing and cross-presentation of nano-particulate antigen is favoured by LCs. Therefore, these studies highlight the importance of LCs in skin immunization strategies and that targeting of nano-particulate immunogens through dissolvable polymeric MNs potentially provides a promising technological platform for improved vaccination strategies.Journal of Investigative Dermatology accepted article preview online, 22 September 2014. doi:10.1038/jid.2014.415.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitric oxide synthase (NOS) inhibitors are largely used to evaluate the NO contribution to pulmonary allergy, but contrasting data have been reported. In this study, pharmacological, biochemical and pharmacokinetic assays were performed to compare the effects of acute and long-term treatment of BALB/C mice with the non-selective NOS inhibitor L-NAME in ovalbumin (OVA)-challenged mice. Acute L-NAME treatment (50 mg/kg, gavage) significantly reduced the eosinophil number in bronchoalveolar lavage fluid (BALF). The inducible NOS (iNOS) inhibitor aminoguanidine (20 mg/kg/day in the drinking water) also significantly reduced the eosinophil number in BALF In contrast, 3-week L-NAME treatment (50 and 150 mg/kg/day in the drinking water) significantly increased the pulmonary eosinophil influx. The constitutive NOS (cNOS) activity in brain and lungs was reduced by both acute and 3-week L-NAME treatments. The pulmonary iNOS activity was reduced by acute L-NAME (or aminoguanidine), but unaffected by 3-week L-NAME treatment. Acute L-NAME (or aminoguanidine) treatment was more efficient to reduce the NO(x) levels compared with 3-week L-NAME treatment. The pharmacokinetic study revealed that L-NAME is not bioavailable when given orally. After acute L-NAME intake, serum concentrations of the metabolite N(omega)-nitro-L-arginine decreased from 30 min to 24 h. In the 3-week L-NAME treatment, the N(omega)-nitro-L-arginine concentration was close to the detection limit. In conclusion, 3-week treatment with L-NAME yields low serum N(omega)-nitro-L-arginine concentrations, causing preferential inhibition of cNOS activity. Therefore, eosinophil influx potentiation by 3-week L-NAME treatment may reflect removal of protective cNOS-derived NO, with no interference on the ongoing inflammation due to iNOS-derived NO. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Shiga-like toxin 2 (Stx2)-producing enterohemorrhagic Escherichia coli (referred to as EHEC or STEC) strains are the primary etiologic agents of hemolytic-uremic syndrome (HUS), which leads to renal failure and high mortality rates. Expression of Stx2 is the most relevant virulence-associated factor of EHEC strains, and toxin neutralization by antigen-specific serum antibodies represents the main target for both preventive and therapeutic anti-HUS approaches. In the present report, we describe two Salmonella enterica serovar Typhimurium aroA vaccine strains expressing a nontoxic plasmid-encoded derivative of Stx2 (Stx2 Delta AB) containing the complete nontoxic A2 subunit and the receptor binding B subunit. The two S. Typhimurium strains differ in the expression of flagellin, the structural subunit of the flagellar shaft, which exerts strong adjuvant effects. The vaccine strains expressed Stx2 Delta AB, either cell bound or secreted into the extracellular environment, and showed enhanced mouse gut colonization and high plasmid stability under both in vitro and in vivo conditions. Oral immunization of mice with three doses of the S. Typhimurium vaccine strains elicited serum anti-Stx2B (IgG) antibodies that neutralized the toxic effects of the native toxin under in vitro conditions (Vero cells) and conferred partial protection under in vivo conditions. No significant differences with respect to gut colonization or the induction of antigen-specific antibody responses were detected in mice vaccinated with flagellated versus nonflagellated bacterial strains. The present results indicate that expression of Stx2 Delta AB by attenuated S. Typhimurium strains is an alternative vaccine approach for HUS control, but additional improvements in the immunogenicity of Stx2 toxoids are still required.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The protective role of specific antibodies against Paracoccidioides brasiliensis is controversial. In the present study, we analyzed the effects of monoclonal antibodies on the major diagnostic antigen (gp43) using in vitro and in vivo P. brasiliensis infection models. The passive administration of some monoclonal antibodies (MAbs) before and after intratracheal or intravenous infections led to a reduced fungal burden and decreased pulmonary inflammation. The protection mediated by MAb 3E, the most efficient MAb in the reduction of fungal burden, was associated with the enhanced phagocytosis of P. brasiliensis yeast cells by J774.16, MH-S, or primary macrophages. The ingestion of opsonized yeast cells led to an increase in NO production by macrophages. Passive immunization with MAb 3E induced enhanced levels of gamma interferon in the lungs of infected mice. The reactivity of MAb 3E against a panel of gp43-derived peptides suggested that the sequence NHVRIPIGWAV contains the binding epitope. The present work shows that some but not all MAbs against gp43 can reduce the fungal burden and identifies a new peptide candidate for vaccine development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chronic hepatitis C virus (HCV) infection is a worldwide health problem that may evolve to cirrhosis and hepatocellular carcinoma. Incompletely understood immune system mechanisms have been associated with impaired viral clearance. The nonclassical class I human leukocyte antigen G (HLA-G) molecule may downregulate immune system cell functions exhibiting well-recognized tolerogenic properties. HCV genotype was analyzed in chronic HCV-infected patients. Because HLA-G expression may be induced by certain viruses, we evaluated the presence of HLA-G in the liver microenvironment obtained from 89 biopsies of patients harboring chronic HCV infection and stratified according to clinical and histopathological features. Overall, data indicated that HCV genotype 1 was predominant, especially subgenotype 1a, with a prevalence of 87%. HLA-G expression was observed in 45(51%) liver specimens, and it was more frequent in milder stages of chronic hepatitis (67.4%) than in moderate (27.8%; p = 0.009) and severe (36.0%; p = 0.021) stages of the disease. Altogether, these results suggest that the expression of HLA-G in the context of HCV is a complex process modulated by many factors, which may contribute to an immunologic environment favoring viral persistence. However, because the milder forms predominantly expressed HLA-G, a protective role of this molecule may not be excluded. (C) 2012 American Society for Histocompatibility and Immunogenetics. Published by Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Agaricus blazei (Ab) has become popularly known for its medicinal properties. Scientifically, it has been tested with regard to its capacity to protect genetic material against damage. We examined different organic extracts (methanolic extract-ME, hexanic extract-HE and n-butanolic extract-BE) and an aqueous extract (AE) of Ab, for their capacity to induce DNA damage as well as for their protective effect. Genetic damage was determined by the chromosomal aberration assay (CA) in CHO-k1 cells for all extracts and the cytokinesis block micronucleus assay (CBMN) in non drug-metabolizing (CHO-k1) and drug-metabolizing (HTC) cell lines for extract BE only. The extracts did not show clastogenicity but showed anticlastogenicity. The greatest percent reduction obtained were with BE (105%) and AE (126%) treatments in CA. BE treatment did not display genotoxicity in CHO-k1, but was genotoxic in HTC. However, BE was shown to be antigenotoxic causing decreased micronucleus frequency in HTC and CHO-k1 cells. These results suggest that all the extracts contained protective substances, but in some cases they could show a genotoxic effect with regard to metabolism. Therefore, these findings warrant caution in the use of this mushroom by the population. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ginkgo biloba (EGb) has been proposed as a promising candidate for cancer chemoprevention and has shown protective effects on the liver against chemically induced oxidative injury and fibrosis. The potential beneficial effects of EGb were investigated in two rat liver carcinogenesis bioassays induced by diethylnitrosamine (DEN). In a short-term study for anti-initiating screening, male Wistar rats were fed a basal diet or supplemented diet with 500 or 1000 ppm EGb and initiated 14 days later with a single dose of DEN (100 mg/kg i.p.). The respective groups were killed 24 h or 2 weeks after DEN-initiation. Liver samples were collected for the analysis of proliferating cell nuclear antigen (PCNA), transforming growth factor alpha (TGF-alpha), p53, apoptosis and induction of single hepatocytes and minifoci positive for the enzyme glutathione S-transferase P-form (GST-P). In a medium-term study for anti-promoting screening, the animals received a single dose of DEN (200 mg/kg i.p.) and, 2 weeks later, were fed a basal diet or supplemented diet with 500 or 1000 ppm EGb for 6 weeks. All animals underwent 70% partial hepatectomy (PH) at week 3 and killed at week 8. Liver samples were colleted to analyze development of preneoplastic foci of altered hepatocytes (FAH) expressing GST-P. In the short-term study, pretreatment of rats with 1000 ppm EGb significantly reduced the rates of cell proliferation, apoptosis and p53, TGF-a immunoreactivity and the number of GST-P-positive hepatocytes. In the medium-term study, EGb treatment during the post-initiation stage failed to reduce the development of DEN-induced GST-P-positive foci. Thus, EGb presented inhibitory actions during initiation but not promotion of rat liver carcinogenesis induced by DEN. (C) 2008 Elsevier B.V. All rights reserved.