3 resultados para Protective Antigen

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In response to infection or tissue dysfunction, immune cells develop into highly heterogeneous repertoires with diverse functions. Capturing the full spectrum of these functions requires analysis of large numbers of effector molecules from single cells. However, currently only 3-5 functional proteins can be measured from single cells. We developed a single cell functional proteomics approach that integrates a microchip platform with multiplex cell purification. This approach can quantitate 20 proteins from >5,000 phenotypically pure single cells simultaneously. With a 1-million fold miniaturization, the system can detect down to ~100 molecules and requires only ~104 cells. Single cell functional proteomic analysis finds broad applications in basic, translational and clinical studies. In the three studies conducted, it yielded critical insights for understanding clinical cancer immunotherapy, inflammatory bowel disease (IBD) mechanism and hematopoietic stem cell (HSC) biology.

To study phenotypically defined cell populations, single cell barcode microchips were coupled with upstream multiplex cell purification based on up to 11 parameters. Statistical algorithms were developed to process and model the high dimensional readouts. This analysis evaluates rare cells and is versatile for various cells and proteins. (1) We conducted an immune monitoring study of a phase 2 cancer cellular immunotherapy clinical trial that used T-cell receptor (TCR) transgenic T cells as major therapeutics to treat metastatic melanoma. We evaluated the functional proteome of 4 antigen-specific, phenotypically defined T cell populations from peripheral blood of 3 patients across 8 time points. (2) Natural killer (NK) cells can play a protective role in chronic inflammation and their surface receptor – killer immunoglobulin-like receptor (KIR) – has been identified as a risk factor of IBD. We compared the functional behavior of NK cells that had differential KIR expressions. These NK cells were retrieved from the blood of 12 patients with different genetic backgrounds. (3) HSCs are the progenitors of immune cells and are thought to have no immediate functional capacity against pathogen. However, recent studies identified expression of Toll-like receptors (TLRs) on HSCs. We studied the functional capacity of HSCs upon TLR activation. The comparison of HSCs from wild-type mice against those from genetics knock-out mouse models elucidates the responding signaling pathway.

In all three cases, we observed profound functional heterogeneity within phenotypically defined cells. Polyfunctional cells that conduct multiple functions also produce those proteins in large amounts. They dominate the immune response. In the cancer immunotherapy, the strong cytotoxic and antitumor functions from transgenic TCR T cells contributed to a ~30% tumor reduction immediately after the therapy. However, this infused immune response disappeared within 2-3 weeks. Later on, some patients gained a second antitumor response, consisted of the emergence of endogenous antitumor cytotoxic T cells and their production of multiple antitumor functions. These patients showed more effective long-term tumor control. In the IBD mechanism study, we noticed that, compared with others, NK cells expressing KIR2DL3 receptor secreted a large array of effector proteins, such as TNF-α, CCLs and CXCLs. The functions from these cells regulated disease-contributing cells and protected host tissues. Their existence correlated with IBD disease susceptibility. In the HSC study, the HSCs exhibited functional capacity by producing TNF-α, IL-6 and GM-CSF. TLR stimulation activated the NF-κB signaling in HSCs. Single cell functional proteome contains rich information that is independent from the genome and transcriptome. In all three cases, functional proteomic evaluation uncovered critical biological insights that would not be resolved otherwise. The integrated single cell functional proteomic analysis constructed a detail kinetic picture of the immune response that took place during the clinical cancer immunotherapy. It revealed concrete functional evidence that connected genetics to IBD disease susceptibility. Further, it provided predictors that correlated with clinical responses and pathogenic outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Distinct structures delineating the introns of Simian Virus 40 T-antigen and Adenovirus 2 E1A genes have been discovered. The structures, which are centered around the branch points of the genes inserted in supercoiled double-stranded plasmids, are specifically targeted through photoactivated strand cleavage by the metal complex tris(4,7-diphenyl-1,10-phenanthroline)rhodium(III). The DNA sites that are recognized lack sequence homology but are similar in demarcating functionally important sites on the RNA level. The single-stranded DNA fragments corresponding to the coding strands of the genes were also found to fold into a structure apparently identical to that in the supercoiled genes based on the recognition by the metal complex. Further investigation of different single-stranded DNA fragments with other structural probes, such as another metal complex bis(1,10-phenanthroline)(phenanthrenequinone diimine)rhodium(III), AMT (4'aminomethyl-4,5',8 trimethylpsoralen), restriction enzyme Mse I, and mung bean nuclease, showed that the structures require the sequ ences at both ends of the intron plus the flanking sequences but not the middle of the intron. The two ends form independent helices which interact with each other to form the global tertiary structures. Both of the intron structures share similarities to the structure of the Holliday junction, which is also known to be specifically targeted by the former metal complex. These structures may have arisen from early RNA intron structures and may have been used to facilitate the evolution of genes through exon shuffling by acting as target sites for recombinase enzymes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite over 30 years of effort, an HIV-1 vaccine that elicits protective antibodies still does not exist. Recent clinical studies have identified that during natural infection about 20% of the population is capable of mounting a potent and protective antibody response. Closer inspection of these individuals reveal that a subset of these antibodies, recently termed potent VRC01-like (PVL), derive exclusively from a single human germline heavy chain gene. Induced clonal expansion of the B cell encoding this gene is the first step through which PVL antibodies may be elicited. Unfortunately, naturally occurring HIV gp120s fail to bind to this germline, and as a result cannot be used as the initial prime for a vaccine regimen. We have determined the crystal structure of an important germline antibody that is a promising target for vaccine design efforts, and have set out to engineer a more likely candidate using computationally-guided rational design.

In addition to prevention efforts on the side of vaccine design, recently characterized broadly neutralizing anti-HIV antibodies have excellent potential for use in gene therapy and passive immunotherapy. The separation distance between functional Fabs on an antibody is important due to the sparse distribution of envelop spikes on HIV compared to other viruses. We set out to build and characterize novel antibody architectures by incorporating structured linkers into the hinge region of an anti-HIV antibody b12. The goal was to observe whether these linkers increased the arm-span of the IgG dimer. When incorporated, flexible Gly4Ser repeats did not result in detectable extensions of the IgG antigen binding domains, by contrast to linkers including more rigid domains such as β2-microglobulin, Zn-α2-glycoprotein, and tetratricopeptide repeats (TPRs). This study adds an additional set of linkers with varying lengths and rigidities to the available linker repertoire, which may be useful for the modification and construction of antibodies and other fusion proteins.