942 resultados para Projective Geometry
Resumo:
Available on demand as hard copy or computer file from Cornell University Library.
Resumo:
Available on demand as hard copy or computer file from Cornell University Library.
Resumo:
In this paper, we prove the nonexistence of arcs with parameters (232, 48) and (233, 48) in PG(4,5). This rules out the existence of linear codes with parameters [232,5,184] and [233,5,185] over the field with five elements and improves two instances in the recent tables by Maruta, Shinohara and Kikui of optimal codes of dimension 5 over F5.
Resumo:
We denoted by nq(k, d), the smallest value of n for which an [n, k, d]q code exists for given q, k, d. Since nq(k, d) = gq(k, d) for all d ≥ dk + 1 for q ≥ k ≥ 3, it is a natural question whether the Griesmer bound is attained or not for d = dk , where gq(k, d) = ∑[d/q^i], i=0,...,k-1, dk = (k − 2)q^(k−1) − (k − 1)q^(k−2). It was shown by Dodunekov [2] and Maruta [9], [10] that there is no [gq(k, dk ), k, dk ]q code for q ≥ k, k = 3, 4, 5 and for q ≥ 2k − 3, k ≥ 6. The purpose of this paper is to determine nq(k, d) for d = dk as nq(k, d) = gq(k, d) + 1 for q ≥ k with 3 ≤ k ≤ 8 except for (k, q) = (7, 7), (8, 8), (8, 9).
Resumo:
We prove the nonexistence of [g3(6, d), 6, d]3 codes for d = 86, 87, 88, where g3(k, d) = ∑⌈d/3i⌉ and i=0 ... k−1. This determines n3(6, d) for d = 86, 87, 88, where nq(k, d) is the minimum length n for which an [n, k, d]q code exists.
Resumo:
2000 Mathematics Subject Classification: Primary 05B05; secondary 62K10.
Resumo:
Dedicated to the memory of S.M. Dodunekov (1945–2012)Abstract. Geometric puncturing is a method to construct new codes. ACM Computing Classification System (1998): E.4.
Resumo:
A Geometria Projetiva é o ramo da matemática que estuda as propriedades geométricas invariantes de uma projeção. Ela surge no século XVII da tentativa de compreender matematicamente as técnicas de desenho em perspectiva empregadas pelos artistas da Renascença. Por outro lado, a Geometria Descritiva também se utiliza de projeções para representar objetos tridimensional em um plano bidimensional. Desta forma, a Geometria Projetiva dialoga com o desenho artístico através das regras de perspectiva, e com o desenho técnico através da Geometria Descritiva. A partir das relações entre estes três campos do conhecimento, elaboramos uma proposta didática para o ensino da Geometria Projetiva a alunos do 9 ∘ ano do ensino fundamental. Este trabalho apresenta esta proposta e busca embasá-la matematicamente, relacionando-a aos principais fundamentos da Geometria Projetiva.
Resumo:
El objetivo de la tesis es identificar una familia de argumentos que comparten una estructura con el principio de dualidad de la geometría proyectiva. Esta familia la denomino "argumentos duales". Para lograr este objetivo, tomo cuatro argumentos importantes de la filosofía analítica e identifico en ellos la estructura que comparten. Los cuatro argumentos son: (i) el acertijo de la inducción de Goodman; (ii) la indeterminación de la referencia Putnam; (iii) la indeterminación de la traducción de Quine; (iv) la paradoja del seguimiento de reglas de Wittgenstein.
Resumo:
Mode of access: Internet.
Resumo:
Available on demand as hard copy or computer file from Cornell University Library.
Resumo:
We investigate the differences --- conceptually and algorithmically --- between affine and projective frameworks for the tasks of visual recognition and reconstruction from perspective views. It is shown that an affine invariant exists between any view and a fixed view chosen as a reference view. This implies that for tasks for which a reference view can be chosen, such as in alignment schemes for visual recognition, projective invariants are not really necessary. We then use the affine invariant to derive new algebraic connections between perspective views. It is shown that three perspective views of an object are connected by certain algebraic functions of image coordinates alone (no structure or camera geometry needs to be involved).
Resumo:
In this paper we relate the numerical invariants attached to a projective curve, called the order sequence of the curve, to the geometry of the varieties of tangent linear spaces to the curve and to the Gauss maps of the curve. © 1992 Sociedade Brasileira de Matemática.
Resumo:
Mimeographed.