Recursive Methods for Construction of Balanced N-ary Block Designs
Data(s) |
18/06/2012
18/06/2012
2005
|
---|---|
Resumo |
2000 Mathematics Subject Classification: Primary 05B05; secondary 62K10. This paper presents a recursive method for the construction of balanced n-ary block designs. This method is based on the analogy between a balanced incomplete binary block design (B.I .E .B) and the set of all distinct linear sub-varieties of the same dimension extracted from a finite projective geometry. If V1 is the first B.I .E .B resulting from this projective geometry, then by regarding any block of V1 as a projective geometry, we obtain another system of B.I .E .B. Then, by reproducing this operation a finite number of times, we get a family of blocks made up of all obtained B.I .E .B blocks. The family being partially ordered, we can obtain an n-ary design in which the blocks are consisted by the juxtaposition of all binary blocks completely nested. These n-ary designs are balanced and have well defined parameters. Moreover, a particular balanced n-ary class is deduced with an appreciable reduction of the number of blocks. |
Identificador |
Serdica Mathematical Journal, Vol. 31, No 3, (2005), 189p-200p 1310-6600 |
Idioma(s) |
en |
Publicador |
Institute of Mathematics and Informatics Bulgarian Academy of Sciences |
Palavras-Chave | #Balanced Incomplete Binary Blocks #N-ary Designs #Finite Projective Geometry #Finite Linear Sub-Variety |
Tipo |
Article |