990 resultados para Positive Fixed-points
Resumo:
We prove a one-to-one correspondence between (i) C1+ conjugacy classes of C1+H Cantor exchange systems that are C1+H fixed points of renormalization and (ii) C1+ conjugacy classes of C1+H diffeomorphisms f with a codimension 1 hyperbolic attractor Lambda that admit an invariant measure absolutely continuous with respect to the Hausdorff measure on Lambda. However, we prove that there is no C1+alpha Cantor exchange system, with bounded geometry, that is a C1+alpha fixed point of renormalization with regularity alpha greater than the Hausdorff dimension of its invariant Cantor set.
Resumo:
We exhibit the construction of stable arc exchange systems from the stable laminations of hyperbolic diffeomorphisms. We prove a one-to-one correspondence between (i) Lipshitz conjugacy classes of C(1+H) stable arc exchange systems that are C(1+H) fixed points of renormalization and (ii) Lipshitz conjugacy classes of C(1+H) diffeomorphisms f with hyperbolic basic sets Lambda that admit an invariant measure absolutely continuous with respect to the Hausdorff measure on Lambda. Let HD(s)(Lambda) and HD(u)(Lambda) be, respectively, the Hausdorff dimension of the stable and unstable leaves intersected with the hyperbolic basic set L. If HD(u)(Lambda) = 1, then the Lipschitz conjugacy is, in fact, a C(1+H) conjugacy in (i) and (ii). We prove that if the stable arc exchange system is a C(1+HDs+alpha) fixed point of renormalization with bounded geometry, then the stable arc exchange system is smooth conjugate to an affine stable arc exchange system.
Resumo:
There is a one-to-one correspondence between C1+H Cantor exchange systems that are C1+H fixed points of renormalization and C1+H diffeomorphisms f on surfaces with a codimension 1 hyperbolic attractor Λ that admit an invariant measure absolutely continuous with respect to the Hausdorff measure on Λ. However, there is no such C1+α Cantor exchange system with bounded geometry that is a C1+α fixed point of renormalization with regularity α greater than the Hausdorff dimension of its invariant Cantor set. The proof of the last result uses that the stable holonomies of a codimension 1 hyperbolic attractor Λ are not C1+θ for θ greater than the Hausdorff dimension of the stable leaves of f intersected with Λ.
Resumo:
We review several results concerning the long time asymptotics of nonlinear diffusion models based on entropy and mass transport methods. Semidiscretization of these nonlinear diffusion models are proposed and their numerical properties analysed. We demonstrate the long time asymptotic results by numerical simulation and we discuss several open problems based on these numerical results. We show that for general nonlinear diffusion equations the long-time asymptotics can be characterized in terms of fixed points of certain maps which are contractions for the euclidean Wasserstein distance. In fact, we propose a new scaling for which we can prove that this family of fixed points converges to the Barenblatt solution for perturbations of homogeneous nonlinearities for values close to zero.
Resumo:
Report for the scientific sojourn at the Research Institute for Applied Mathematics and Cybernetics, Nizhny Novgorod, Russia, from July to September 2006. Within the project, bifurcations of orbit behavior in area-preserving and reversible maps with a homoclinic tangency were studied. Finitely smooth normal forms for such maps near saddle fixed points were constructed and it was shown that they coincide in the main order with the analytical Birkhoff-Moser normal form. Bifurcations of single-round periodic orbits for two-dimensional symplectic maps close to a map with a quadratic homoclinic tangency were studied. The existence of one- and two-parameter cascades of elliptic periodic orbits was proved.
Resumo:
In this article, we consider solutions starting close to some linearly stable invariant tori in an analytic Hamiltonian system and we prove results of stability for a super-exponentially long interval of time, under generic conditions. The proof combines classical Birkhoff normal forms and a new method to obtain generic Nekhoroshev estimates developed by the author and L. Niederman in another paper. We will mainly focus on the neighbourhood of elliptic fixed points, the other cases being completely similar.
Resumo:
We report experimental and numerical results showing how certain N-dimensional dynamical systems are able to exhibit complex time evolutions based on the nonlinear combination of N-1 oscillation modes. The experiments have been done with a family of thermo-optical systems of effective dynamical dimension varying from 1 to 6. The corresponding mathematical model is an N-dimensional vector field based on a scalar-valued nonlinear function of a single variable that is a linear combination of all the dynamic variables. We show how the complex evolutions appear associated with the occurrence of successive Hopf bifurcations in a saddle-node pair of fixed points up to exhaust their instability capabilities in N dimensions. For this reason the observed phenomenon is denoted as the full instability behavior of the dynamical system. The process through which the attractor responsible for the observed time evolution is formed may be rather complex and difficult to characterize. Nevertheless, the well-organized structure of the time signals suggests some generic mechanism of nonlinear mode mixing that we associate with the cluster of invariant sets emerging from the pair of fixed points and with the influence of the neighboring saddle sets on the flow nearby the attractor. The generation of invariant tori is likely during the full instability development and the global process may be considered as a generalized Landau scenario for the emergence of irregular and complex behavior through the nonlinear superposition of oscillatory motions
Resumo:
We study the singular effects of vanishingly small surface tension on the dynamics of finger competition in the Saffman-Taylor problem, using the asymptotic techniques described by Tanveer [Philos. Trans. R. Soc. London, Ser. A 343, 155 (1993)] and Siegel and Tanveer [Phys. Rev. Lett. 76, 419 (1996)], as well as direct numerical computation, following the numerical scheme of Hou, Lowengrub, and Shelley [J. Comput. Phys. 114, 312 (1994)]. We demonstrate the dramatic effects of small surface tension on the late time evolution of two-finger configurations with respect to exact (nonsingular) zero-surface-tension solutions. The effect is present even when the relevant zero-surface-tension solution has asymptotic behavior consistent with selection theory. Such singular effects, therefore, cannot be traced back to steady state selection theory, and imply a drastic global change in the structure of phase-space flow. They can be interpreted in the framework of a recently introduced dynamical solvability scenario according to which surface tension unfolds the structurally unstable flow, restoring the hyperbolicity of multifinger fixed points.
Resumo:
A dynamical systems approach to competition of Saffman-Taylor fingers in a Hele-Shaw channel is developed. This is based on global analysis of the phase space flow of the low-dimensional ordinary-differential-equation sets associated with the classes of exact solutions of the problem without surface tension. Some simple examples are studied in detail. A general proof of the existence of finite-time singularities for broad classes of solutions is given. Solutions leading to finite-time interface pinchoff are also identified. The existence of a continuum of multifinger fixed points and its dynamical implications are discussed. We conclude that exact zero-surface tension solutions taken in a global sense as families of trajectories in phase space are unphysical because the multifinger fixed points are nonhyperbolic, and an unfolding does not exist within the same class of solutions. Hyperbolicity (saddle-point structure) of the multifinger fixed points is argued to be essential to the physically correct qualitative description of finger competition. The restoring of hyperbolicity by surface tension is proposed as the key point to formulate a generic dynamical solvability scenario for interfacial pattern selection.
Resumo:
We study the minimal class of exact solutions of the Saffman-Taylor problem with zero surface tension, which contains the physical fixed points of the regularized (nonzero surface tension) problem. New fixed points are found and the basin of attraction of the Saffman-Taylor finger is determined within that class. Specific features of the physics of finger competition are identified and quantitatively defined, which are absent in the zero surface tension case. This has dramatic consequences for the long-time asymptotics, revealing a fundamental role of surface tension in the dynamics of the problem. A multifinger extension of microscopic solvability theory is proposed to elucidate the interplay between finger widths, screening and surface tension.
Resumo:
In the classical theorems of extreme value theory the limits of suitably rescaled maxima of sequences of independent, identically distributed random variables are studied. The vast majority of the literature on the subject deals with affine normalization. We argue that more general normalizations are natural from a mathematical and physical point of view and work them out. The problem is approached using the language of renormalization-group transformations in the space of probability densities. The limit distributions are fixed points of the transformation and the study of its differential around them allows a local analysis of the domains of attraction and the computation of finite-size corrections.
Resumo:
The concepts of dissipation and feedback are contained in the behavior of many natural dynamical systems. They have been used to predict the evolution of populations leading to the formulation of the quadratic logistic equation (QLE). More recently, the QLE has been used to provide a better understanding of physicochemical systems with promising results. Many physical, chemical and biological dynamic phenomena can be understood on the basis of the QLE and this work describes the main aspects of this equation and some recent applications, with emphasis on electrochemical systems. Also, it is illustrated the concept of potential energy as a convenient way of describing the stability of the fixed points of the QLE.
Resumo:
We show how certain N-dimensional dynamical systems are able to exploit the full instability capabilities of their fixed points to do Hopf bifurcations and how such a behavior produces complex time evolutions based on the nonlinear combination of the oscillation modes that emerged from these bifurcations. For really different oscillation frequencies, the evolutions describe robust wave form structures, usually periodic, in which selfsimilarity with respect to both the time scale and system dimension is clearly appreciated. For closer frequencies, the evolution signals usually appear irregular but are still based on the repetition of complex wave form structures. The study is developed by considering vector fields with a scalar-valued nonlinear function of a single variable that is a linear combination of the N dynamical variables. In this case, the linear stability analysis can be used to design N-dimensional systems in which the fixed points of a saddle-node pair experience up to N21 Hopf bifurcations with preselected oscillation frequencies. The secondary processes occurring in the phase region where the variety of limit cycles appear may be rather complex and difficult to characterize, but they produce the nonlinear mixing of oscillation modes with relatively generic features
Resumo:
The nonlinear analysis of a general mixed second order reaction was performed, aiming to explore some basic tools concerning the mathematics of nonlinear differential equations. Concepts of stability around fixed points based on linear stability analysis are introduced, together with phase plane and integral curves. The main focus is the chemical relationship between changes of limiting reagent and transcritical bifurcation, and the investigation underlying the conclusion.
Resumo:
Developed from human activities, mathematical knowledge is bound to the world and cultures that men and women experience. One can say that mathematics is rooted in humans’ everyday life, an environment where people reach agreement regarding certain “laws” and principles in mathematics. Through interaction with worldly phenomena and people, children will always gain experience that they can then in turn use to understand future situations. Consequently, the environment in which a child grows up plays an important role in what that child experiences and what possibilities for learning that child has. Variation theory, a branch of phenomenographical research, defines human learning as changes in understanding and acting towards a specific phenomenon. Variation theory implies a focus on that which it is possible to learn in a specific learning situation, since only a limited number of critical aspects of a phenomenon can be simultaneously discerned and focused on. The aim of this study is to discern how toddlers experience and learn mathematics in a daycare environment. The study focuses on what toddlers experience, how their learning experience is formed, and how toddlers use their understanding to master their environment. Twenty-three children were observed videographically during everyday activities. The videographic methodology aims to describe and interpret human actions in natural settings. The children are aged from 1 year, 1 month to 3 years, 9 months. Descriptions of the toddlers’ actions and communication with other children and adults are analyzed phenomenographically in order to discover how the children come to understand the different aspects of mathematics they encounter. The study’s analysis reveals that toddlers encounter various mathematical concepts, similarities and differences, and the relationship between parts and whole. Children form their understanding of such aspects in interaction with other children and adults in their everyday life. The results also show that for a certain type of learning to occur, some critical conditions must exist. Variation, simultaneity, reasonableness and fixed points are critical conditions of learning that appear to be important for toddlers’ learning. These four critical conditions are integral parts of the learning process. How children understand mathematics influences how they use mathematics as a tool to master their surrounding world. The results of the study’s analysis of how children use their understanding of mathematics shows that children use mathematics to uphold societal rules, to describe their surrounding world, and as a tool for problem solving. Accordingly, mathematics can be considered a very important phenomenon that children should come into contact with in different ways and which needs to be recognized as a necessary part of children’s everyday life. Adults working with young children play an important role in setting perimeters for children’s experiences and possibilities to explore mathematical concepts and phenomena. Therefore, this study is significant as regards understanding how children learn mathematics through everyday activities.