50 resultados para Phosphoramidite
Resumo:
The roles played by many ncRNAs remain largely unknown. Similarly, relatively little is known about the RNA binding proteins involved in processing ncRNA. Identification of new RNA/RNA binding protein (RBP) interactions may pave the way to gain a better understanding of the complex events occurring within cells during gene expression and ncRNA biogenesis. The development of chemical tools for the isolation of RBPs is of paramount importance. In this context, we report on the synthesis of the uridine phosphoramidite U Dz that bears a diazirine moiety on the nucleobase. RNA probes containing U Dz units were irradiated in the presence of single-stranded DNA binding protein (SSB), which is also known to bind ssRNAs, and shown to efficiently (15% yield) and selectively cross-link to the protein. The corresponding diazirine-modified uridine triphosphate U DzTP was synthesized and its capacity to act as a substrate for the T7 RNA polymerase was tested in transcription assays. U DzTP was accepted with a maximum yield of 38% for a 26mer RNA containing a single incorporation and 28% yield for triple consecutive incorporations. Thus, this uridine analogue represents a convenient biochemical tool for the identification of RNA binding proteins and unraveling the role and function played by ncRNAs.
Resumo:
A novel synthesis of 2'-deoxypseudoisocytidine as well as of its phosphoramidite building block for oligonucleotide synthesis is presented. The synthesis is based on Heck-coupling between N-protected pseudoisocytosine and a silyl protected furanoid glycal. With this procedure the corresponding phosphoramidite building block is obtained in 5 steps and an overall yield of 28%.
Resumo:
Tricyclo-DNA belongs to the family of conformationally restricted oligodeoxynucleotide analogues. It differs structurally from DNA by an additional ethylene bridge between the centers C(3') and C(5') of the nucleosides, to which a cyclopropane unit is fused for further enhancement of structural rigidity. The synthesis of the hitherto unknown tricyclodeoxynucleosides containing the bases cytosine and guanine and of the corresponding phosphoramidite building blocks is described, as well as a structural description of a representative of an alpha- and a beta-tricyclodeoxynucleoside by X-ray analysis. Tricyclodeoxynucleoside building blocks of all four bases were used for the synthesis of fully modified mixed-base oligonucleotides. Their Watson-Crick pairing properties with complementary DNA, RNA, and with itself were investigated by UV melting curves, CD spectroscopy, and molecular modeling. Tricyclo-DNA was found to be a very stable Watson-Crick base-pairing system. A UV melting curve analysis of the decamers tcd(pcgtgacagtt) and tcd(paactgtcacg) showed increased thermal stabilities of up to DeltaT(m)/mod. = +1.2 degrees C with complementary DNA and +2.4 degrees C with complementary RNA. With itself, tricyclo-DNA showed an increase in stability of +3.1 degrees C/base pair relative to DNA. Investigations into the thermodynamic properties of these decamers revealed an entropic stabilization and an enthalpic destabilization for the tricyclo-DNA/DNA duplexes. CD spectroscopic structural investigations indicated that tricyclo-DNA containing duplexes preferrably exist in an A-conformation, a fact which is in agreement with results from molecular modeling
Resumo:
We describe the synthesis and incorporation into alpha-DNA of a novel conformationally constrained alpha-nucleoside analogue. The carbohydrate part of this analogue was prepared in 4 steps from the known bicyclic precursor 1 via a stereospecific, intramolecular, Et 3B mediated radical addition to a keto-function as the key step. The thus obtained intermediate 4 was transformed stereoselectively into the corresponding alpha-nucleoside analogues 7 and 8 containing the bases adenine and thymine, and were further elaborated into the phosphoramidite building blocks 11 and 12 . Both building blocks were incorporated into alpha-oligodeoxynucleotides and their pairing behavior to parallel complementary DNA studied by UV-melting experiments. Single substitutions of alpha-deoxyribnucleoside units by the new analogues in the center of duplexes were found to be thermally destabilizing by only -0.8 to -3.1›C.
Resumo:
A novel method for the synthesis of pyrrolidine C-nucleosides has been developed. The key step of the synthesis is the palladium(0)-mediated coupling of a disubstituted N-protected 2-pyrroline and 5-iodouracil. C-Nucleoside 14 and its N-methyl derivative 15 can easily be converted to the corresponding phosphoramidite building blocks for DNA synthesis
Resumo:
The DNA analogue tricyclo-DNA, built from conformationally rigid nucleoside analogues that were linked via tertiary phosphodiester functions, can efficiently be synthesized from the corresponding phosphoramidites by conventional solid-phase cyanoethyl phosphoramidite chemistry. 5'-End phosphorylated tricyclo-DNA sequences are chemically stable in aqueous, pH-neutral media at temperatures from 0 to 90 C. Tricyclo-DNA sequences resist enzymatic hydrolysis by the 3'-exonuclease snake venom phosphodiesterase. Homobasic adenine- and thymine-containing tricyclo-DNA octa- and nonamers are extraordinarily stable A-T base-pairing systems, not only in their own series but also with complementary DNA and RNA. Base mismatch formation is strongly destabilized. As in bicyclo-DNA, the tricyclo-DNA purine sequences preferentially accept a complementary strand on the Hoogsteen face of the base. A thermodynamic analysis reveals entropic benefits in the case of hetero-backbone duplex formation (tricyclo-DNA/DNA duplexes) and both an enthalpic and entropic benefit for duplex formation in the pure tricyclo-DNA series compared to natural DNA. Stability of tricyclo-DNA duplex formation depends more strongly on monovalent salt concentration compared to natural DNA. Homopyrimidine DNA sequences containing tricyclothymidine residues form triplexes with complementary double-stranded DNA. Triple-helix stability depends on the sequence composition and can be higher when compared to that of natural DNA. The use of one tricyclothymidine residue in the center of the self-complementary dodecamer duplex (d(CGCGAAT t CGCG), t = tricyclothymidine) strongly stabilizes its monomolecular hairpin loop structure relative to that of the corresponding pure DNA dodecamer ( T m = +20 C), indicating (tetra)loop-stabilizing properties of this rigid nucleoside analogue.
Resumo:
10.1002/hlca.19950780816.abs A conformational analysis of the (3′S,5′R)-2′-deoxy-3′,5′-ethano-α-D-ribonucleosides (a-D-bicyclodeoxynucleosides) based on the X-ray analysis of N4-benzoyl-α-D-(bicyclodeoxycytidine) 6 and on 1H-NMR analysis of the α-D-bicyclodeoxynucleoside derivatives 1-7 reveals a rigid sugar structure with the furanose units in the l′-exo/2′-endo conformation and the secondary OH groups on the carbocyclic ring in the pseudoequatorial orientation. Oligonucleotides consisting of α-D-bicyclothymidine and α-D-bicyclodeoxyadenosine were successfully synthesized from the corresponding nucleosides by phosphoramidite methodology on a DNA synthesizer. An evaluation of their pairing properties with complementary natural RNA and DNA by means of UV/melting curves and CD spectroscopy show the following characteristics: i) α-bcd(A10) and α-bcd(T10) (α = short form of α-D)efficiently form complexes with complementary natural DNA and RNA. The stability of these hybrids is comparable or slightly lower as those with natural β-d(A10) or β-d(T10)( β = short form ofβ-D). ii) The strand orientation in α-bicyclo-DNA/β-DNA duplexes is parallel as was deduced from UV/melting curves of decamers with nonsymmetric base sequences. iii) CD Spectroscopy shows significant structural differences between α-bicyclo-DNA/β-DNA duplexes compared to α-DNA/β-DNA duplexes. Furthermore, α-bicyclo-DNA is ca. 100-fold more resistant to the enzyme snake-venom phosphodiesterase with respect to β-DNA and about equally resistant as α-DNA.
Resumo:
10.1002/hlca.19900730309.abs In three steps, 2-deoxy-D-ribose has been converted into a phosphoramidite building block bearing a (t-Bu)Me2Si protecting group at the OH function of the anomeric centre of the furanose ring. This building block was subsequently incorporated into DNA oligomers of various base sequences using the standard phosphoramidite protocol for automated DNA synthesis. The resulting silyl-oligomers have been purified by HPLC and selectively desilylated to the corresponding free apurinic DNA sequences. The hexamer d (A-A-A-A-X-A) (X representing the apurinic site) which was prepared in this way was characterized by 1H- and 31P-NMR spectroscopy. The other sequences as well as their fragments, which formed upon treatment with alkali base, were analyzed by polyacrylamide gel electrophoresis.
Resumo:
An automated oligonucleotide synthesizer has been developed that can simultaneously and rapidly synthesize up to 96 different oligonucleotides in a 96-well microtiter format using phosphoramidite synthesis chemistry. A modified 96-well plate is positioned under reagent valve banks, and appropriate reagents are delivered into individual wells containing the growing oligonucleotide chain, which is bound to a solid support. Each well has a filter bottom that enables the removal of spent reagents while retaining the solid support matrix. A seal design is employed to control synthesis environment and the entire instrument is automated via computer control. Synthesis cycle times for 96 couplings are < 11 min, allowing a plate of 96 20-mers to be synthesized in < 5 hr. Oligonucleotide synthesis quality is comparable to commercial machines, with average coupling efficiencies routinely > 98% across the entire 96-well plate. No significant well-to-well variations in synthesis quality have been observed in > 6000 oligonucleotides synthesized to date. The reduced reagent usage and increased capacity allow the overall synthesis cost to drop by at least a factor of 10. With the development of this instrument, it is now practical and cost-effective to synthesize thousands to tens of thousands of oligonucleotides.
Resumo:
The synthesis of a GSK 2nd generation inhibitor of the hepatitis C virus, by enantioselective 1,3-dipolar cycloaddition between a leucine derived iminoester and tert-butyl acrylate, was studied. The comparison between silver(I) and gold(I) catalysts in this reaction was established by working with chiral phosphoramidites or with chiral BINAP. The best reaction conditions were used for the total synthesis of the hepatitis C virus inhibitor by a four step procedure affording this product in 99% ee and in 63% overall yield. The origin of the enantioselectivity of the chiral gold(I) catalyst was justified according to DFT calculations, the stabilizing coulombic interaction between the nitrogen atom of the thiazole moiety and one of the gold atoms being crucial.
Resumo:
Chiral complexes formed by privileged phosphoramidites derived from chiral binol and optically pure Davies’ amines, and copper(II) triflate, silver(I) triflate or silver(I) benzoate are excellent catalysts for the general 1,3-dipolar cycloaddition between nitroalkenes and azomethine ylides generated from α-amino acid derived imino esters. These three methods can be conducted at room temperature to afford the exo-cycloadducts (4,5-trans-2,5-cis-4-nitroprolinates) with high diastereoselectivity and high enantioselectivity. In general, the three procedures are complementary but silver catalysts are more versatile and less sensitive to sterically congested starting materials.
Resumo:
The use of oligonucleotides directed against the mRNA of HIV promises site-specific inhibition of viral replication. In this work, the effect of aralkyl substituents on oligonucleotide duplex stability was studied using model oligonucleotide sequences in an attempt to improve targeting of oligonucleotides to viral mRNA. Arakyl-substituted oligonucleotides were made by solid phase synthesis using either the appropriate aralkyl-substituted phosphoramidite or by post-synthetic substitution of a pentafluorophenoxy substituent by N-methylphenethylamine. The presence of phenethyl or benzoyl substituents invariably resulted in thermodynamic destabilisation of all duplexes studied. The methods which were developed for the synthesis of nucleoside intermediates for oligonucleotide applications were also used to prepare a series of nucleoside analogues derived from uridine, 2'-deoxyuridine and AZT. Crystal structures of six compounds were successfully determined. Anti-HIV activity was observed for most compounds in the series although none were without cytotoxicity. The most active compound of the series was the ribose nucleoside; 1-β-D-erythro-pentofuranosyl-4-pentafluorophenoxy-pyrimidine-2(1H)-one 95, derived directly from uridine. The same series of compounds also displayed very modest anti-cancer activity. To enable synthesis of prooligonucleotides and analogues for possible antisense applications, the properties of a new Silyl-Linked Controlled Pore Glass solid support were investigated. Synthesis of the sequences d(Tp)7T, d(Tps)7T and the base-sensitive d(Tp)3(CBzp)2(Tp)2T was achieved using the silyl-linked solid support in a fluoride-induced cleavage/deprotection strategy.
Resumo:
Covalent attachment of the anticancer drugs temozolomide (Temodal) and mitozolomide to triplex-forming oligonucleotides (TFOs) is a potential way of targeting these alkylating agents to specific gene sequences to maximise site-selectivity. In this work, polypyrimidine TFO conjugates of both drugs were synthesised and targeted to duplex DNA in an attempt to effect site-specific alkylation of guanine residues. Concurrently, in an attempt to enhance the triple helix stability of TFOs at neutral pH, the thermal stabilities of triplexes formed from TFOs containing isoguanine, 2-O-benzyl- and 2-O-allyl-adenine were evaluated. A novel cleavage and deprotection procedure was developed which allowed for the solid phase synthesis of the base-sensitive TFO-drug conjugates using a recently developed silyl-linked controlled pore glass (SLCPG) support. Covalent attachment of either temozolomide or mitozolomide at the 5'-end of TFO conjugates caused no destabilisation of the triplexes studied. The synthesis of a phosphoramidite derivative of mitozolomide enabled direct incorporation of this reagent into a model sequence during DNA synthesis. After cleavage and deprotection of the TFO-drug conjugate, the 5'-end mitozolomide residue was found to have decomposed presumably as a result of ring-opening of the tetrazinone ring. The base-sensitive antibacterial and antitumour agent, metronidazole, was also successfully incorporated at the 5'-end of the oligonucleotide d(T8) using conventional methods. Two C2-substituted derivatives of 2'-deoxyadenosine containing 2-O-benzyl and 2-O-allyl groups were synthesised. Hydrogenolysis of the 2-O-benzyl analogue provided a useful route, amenable to scale-up, for the synthesis of the rare nucleoside 2'-deoxyisoguanosine (isoG). Both the 2-O-allyl and 2-O-benzyl derivatives were incorporated into TFO sequences using phosphoramidite methodology. Thermal melting experiments showed that the 2-O-allyl and 2-O-benzyl groups caused marked destabilisation of the triple helices studied, in contrast to hexose-DNA duplexes, where aralkyl substituents caused significant stabilisation of duplexes. TFOs containing isoG were synthesised by Pd(O)-catalysed deallylation of 2-0-allyl adenine residues. These sequences containing isoG, in its N3- or 02-H tautomeric form, formed triple helices which were equally as stable as those containing adenine.
Resumo:
The efficacy of antisense oligonucleotide (ODN) therapy is dependent on four major parameters: delivery to cells, intracellular stability and localisation and efficient action at the target site.The aim of this project was to study the delivery of ODNs to macrophages and to assess the stability of two ODN conjugates, in vitro. The first conjugate aimed to improve uptake of ODNs via mannose receptor mediated delivery, the second investigated the improved delivery of ODN conjugates via non-specific lipophilic interaction with the cell membrane. A mono-mannose phosphoramidite derivative was designed and synthesised and a mono-mannose ODN conjugate synthesised by standard phosphoramidite chemistry. Delivery of this conjugate was enhanced to RAW264.7 and J774 macrophage cell lines via a mechanism of receptor mediated endocytosis. The delivery of three lipophilic ODN conjugates, cholesterol (cholhex), 16-carbon alkyl chain (C16) and hexa-ethylene glycol (HEG) moieties and an unconjugated ODN were assessed in RAW264.7 macrophages. All three conjugates increased the lipophilicity of the ODN as assessed from partition coefficient data. Both the cholhex and unconjugated ODNs were found to have higher degrees of cellular association than the C16 and HEG conjugates. Cellular uptake studies implicated internalisation of these ODNs by an adsorptive endocytosis mechanism. Following endocytosis, ODNs must remain stable during their residence in endosomal/lysosomal compartments prior to exiting and exerting their biological action in either the cytosol or nucleus. Assessment of in vitro stability in a lysosomal extract revealed the cholhex conjugate and unconjugated ODNs to have a longer half-life than the C16 and HEG conjugated ODNs, highlighting the influence of conjugate moieties on lysosomal stability. The effects of base composition and length on stability in a lysosomal extract revealed the longest half-life for homo-cytidine ODNs and ODNs over 20 nucleotides in length. These studies suggest that the above conjugates can enhance cellular association and delivery of antisense ODNs to cultured macrophages. This may lead to their use in treating disorders such as HIV infection, which affects this cell type.
Resumo:
Modified oligonucleotides containing sulphur group have been useful tools for studies of carcinogenesis, protein or nucleic acid structures and functions, protein-nucleic acid interactions, and for antisense modulation of gene expression. One successful example has been the synthesis and study of oligodeoxynucleotides containing 6-thio-2'-deoxyguanine. 6-Thio-2-deoxyguanosine was first discovered as metabolic compound of 6- mercaptopurine (6-MP). Later, it was applied as drug to cure leukaemia. During the research of its toxicity, a method was developed to use the sulphur group as a versatile position for post-synthetic modification. The advantage of application of post-synthetic modification lies in its convenience. Synthesis of oligomers with normal sequences has become routine work in most laboratories. However, design and synthesis of a proper phosphoramidite monomer for a new modified nucleoside are always difficult tasks even for a skilful chemist. Thus an alternative method (post-synthetic method) has been invented to overcome the difficulties. This was achieved by incorporation of versatile nucleotides into oligomers which contain a leaving group, that is sufficiently stable to withstand the conditions of synthesis but can be substituted by nucleophiles after synthesis, to produce, a series of oligomers each containing a different modified base. In the current project, a phosphoramidite monomer with 6-thioguanine has been successfully synthesised and incorporated into RNA. A deprotection procedure, which is specific for RNA was designed for oligomers containing 6-thioguanosine. The results were validated by various methods (UV, HPLC, enzymatic digestion). Pioneer work in utilization of the versatile sulphur group for post-synthetic modification was also tested. Post-synthetic modification was also carried out on DNA with 6- deoxythioguanosine. Electrophilic reagents with various functional groups (alphatic, aromatic, fluorescent) and bi-functional groups have been attached with the oligomers.