903 resultados para Pattern classification


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Selection of features that will permit accurate pattern classification is a difficult task. However, if a particular data set is represented by discrete valued features, it becomes possible to determine empirically the contribution that each feature makes to the discrimination between classes. This paper extends the discrimination bound method so that both the maximum and average discrimination expected on unseen test data can be estimated. These estimation techniques are the basis of a backwards elimination algorithm that can be use to rank features in order of their discriminative power. Two problems are used to demonstrate this feature selection process: classification of the Mushroom Database, and a real-world, pregnancy related medical risk prediction task - assessment of risk of perinatal death.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Foot morphology and function has received increasing attention from both biomechanics researchers and footwear manufacturers. In this study, 168 habitually unshod runners (90 males whose age, weight & height were 23 +/- 2.4years, 66 +/- 7.1kg & 1.68 +/- 0.13m and 78 females whose age, weight & height were 22 +/- 1.8years, 55 +/- 4.7kg & 1.6 +/- 0.11m) (Indians) and 196 shod runners (130 males whose age, weight & height were 24 +/- 2.6years, 66 +/- 8.2kg & 1.72 +/- 0.18m and 66 females whose age, weight & height were 23 +/- 1.5years, 54 +/- 5.6kg & 1.62 +/- 0.15m)(Chinese) participated in a foot scanning test using the easy-foot-scan (a three-dimensional foot scanning system) to obtain 3D foot surface data and 2D footprint imaging. Foot length, foot width, hallux angle and minimal distance from hallux to second toe were calculated to analyze foot morphological differences. This study found that significant differences exist between groups (shod Chinese and unshod Indians) for foot length (female p = 0.001), width (female p = 0.001), hallux angle (male and female p = 0.001) and the minimal distance (male and female p = 0.001) from hallux to second toe. This study suggests that significant differences in morphology between different ethnicities could be considered for future investigation of locomotion biomechanics characteristics between ethnicities and inform last shape and design so as to reduce injury risks and poor performance from mal-fit shoes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new clustering technique, based on the concept of immediato neighbourhood, with a novel capability to self-learn the number of clusters expected in the unsupervized environment, has been developed. The method compares favourably with other clustering schemes based on distance measures, both in terms of conceptual innovations and computational economy. Test implementation of the scheme using C-l flight line training sample data in a simulated unsupervized mode has brought out the efficacy of the technique. The technique can easily be implemented as a front end to established pattern classification systems with supervized learning capabilities to derive unified learning systems capable of operating in both supervized and unsupervized environments. This makes the technique an attractive proposition in the context of remotely sensed earth resources data analysis wherein it is essential to have such a unified learning system capability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, pattern classification problem in tool wear monitoring is solved using nature inspired techniques such as Genetic Programming(GP) and Ant-Miner (AM). The main advantage of GP and AM is their ability to learn the underlying data relationships and express them in the form of mathematical equation or simple rules. The extraction of knowledge from the training data set using GP and AM are in the form of Genetic Programming Classifier Expression (GPCE) and rules respectively. The GPCE and AM extracted rules are then applied to set of data in the testing/validation set to obtain the classification accuracy. A major attraction in GP evolved GPCE and AM based classification is the possibility of obtaining an expert system like rules that can be directly applied subsequently by the user in his/her application. The performance of the data classification using GP and AM is as good as the classification accuracy obtained in the earlier study.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Core Vector Machine(CVM) is suitable for efficient large-scale pattern classification. In this paper, a method for improving the performance of CVM with Gaussian kernel function irrespective of the orderings of patterns belonging to different classes within the data set is proposed. This method employs a selective sampling based training of CVM using a novel kernel based scalable hierarchical clustering algorithm. Empirical studies made on synthetic and real world data sets show that the proposed strategy performs well on large data sets.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we show the applicability of Ant Colony Optimisation (ACO) techniques for pattern classification problem that arises in tool wear monitoring. In an earlier study, artificial neural networks and genetic programming have been successfully applied to tool wear monitoring problem. ACO is a recent addition to evolutionary computation technique that has gained attention for its ability to extract the underlying data relationships and express them in form of simple rules. Rules are extracted for data classification using training set of data points. These rules are then applied to set of data in the testing/validation set to obtain the classification accuracy. A major attraction in ACO based classification is the possibility of obtaining an expert system like rules that can be directly applied subsequently by the user in his/her application. The classification accuracy obtained in ACO based approach is as good as obtained in other biologically inspired techniques.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Design of speaker identification schemes for a small number of speakers (around 10) with a high degree of accuracy in controlled environment is a practical proposition today. When the number of speakers is large (say 50–100), many of these schemes cannot be directly extended, as both recognition error and computation time increase monotonically with population size. The feature selection problem is also complex for such schemes. Though there were earlier attempts to rank order features based on statistical distance measures, it has been observed only recently that the best two independent measurements are not the same as the combination in two's for pattern classification. We propose here a systematic approach to the problem using the decision tree or hierarchical classifier with the following objectives: (1) Design of optimal policy at each node of the tree given the tree structure i.e., the tree skeleton and the features to be used at each node. (2) Determination of the optimal feature measurement and decision policy given only the tree skeleton. Applicability of optimization procedures such as dynamic programming in the design of such trees is studied. The experimental results deal with the design of a 50 speaker identification scheme based on this approach.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents the design of a full fledged OCR system for printed Kannada text. The machine recognition of Kannada characters is difficult due to similarity in the shapes of different characters, script complexity and non-uniqueness in the representation of diacritics. The document image is subject to line segmentation, word segmentation and zone detection. From the zonal information, base characters, vowel modifiers and consonant conjucts are separated. Knowledge based approach is employed for recognizing the base characters. Various features are employed for recognising the characters. These include the coefficients of the Discrete Cosine Transform, Discrete Wavelet Transform and Karhunen-Louve Transform. These features are fed to different classifiers. Structural features are used in the subsequent levels to discriminate confused characters. Use of structural features, increases recognition rate from 93% to 98%. Apart from the classical pattern classification technique of nearest neighbour, Artificial Neural Network (ANN) based classifiers like Back Propogation and Radial Basis Function (RBF) Networks have also been studied. The ANN classifiers are trained in supervised mode using the transform features. Highest recognition rate of 99% is obtained with RBF using second level approximation coefficients of Haar wavelets as the features on presegmented base characters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The design and operation of the minimum cost classifier, where the total cost is the sum of the measurement cost and the classification cost, is computationally complex. Noting the difficulties associated with this approach, decision tree design directly from a set of labelled samples is proposed in this paper. The feature space is first partitioned to transform the problem to one of discrete features. The resulting problem is solved by a dynamic programming algorithm over an explicitly ordered state space of all outcomes of all feature subsets. The solution procedure is very general and is applicable to any minimum cost pattern classification problem in which each feature has a finite number of outcomes. These techniques are applied to (i) voiced, unvoiced, and silence classification of speech, and (ii) spoken vowel recognition. The resulting decision trees are operationally very efficient and yield attractive classification accuracies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Somente no ano de 2011 foram adquiridos mais de 1.000TB de novos registros digitais de imagem advindos de Sensoriamento Remoto orbital. Tal gama de registros, que possui uma progressão geométrica crescente, é adicionada, anualmente, a incrível e extraordinária massa de dados de imagens orbitais já existentes da superfície da Terra (adquiridos desde a década de 70 do século passado). Esta quantidade maciça de registros, onde a grande maioria sequer foi processada, requer ferramentas computacionais que permitam o reconhecimento automático de padrões de imagem desejados, de modo a permitir a extração dos objetos geográficos e de alvos de interesse, de forma mais rápida e concisa. A proposta de tal reconhecimento ser realizado automaticamente por meio da integração de técnicas de Análise Espectral e de Inteligência Computacional com base no Conhecimento adquirido por especialista em imagem foi implementada na forma de um integrador com base nas técnicas de Redes Neurais Computacionais (ou Artificiais) (através do Mapa de Características Auto- Organizáveis de Kohonen SOFM) e de Lógica Difusa ou Fuzzy (através de Mamdani). Estas foram aplicadas às assinaturas espectrais de cada padrão de interesse, formadas pelos níveis de quantização ou níveis de cinza do respectivo padrão em cada uma das bandas espectrais, de forma que a classificação dos padrões irá depender, de forma indissociável, da correlação das assinaturas espectrais nas seis bandas do sensor, tal qual o trabalho dos especialistas em imagens. Foram utilizadas as bandas 1 a 5 e 7 do satélite LANDSAT-5 para a determinação de cinco classes/alvos de interesse da cobertura e ocupação terrestre em três recortes da área-teste, situados no Estado do Rio de Janeiro (Guaratiba, Mangaratiba e Magé) nesta integração, com confrontação dos resultados obtidos com aqueles derivados da interpretação da especialista em imagens, a qual foi corroborada através de verificação da verdade terrestre. Houve também a comparação dos resultados obtidos no integrador com dois sistemas computacionais comerciais (IDRISI Taiga e ENVI 4.8), no que tange a qualidade da classificação (índice Kappa) e tempo de resposta. O integrador, com classificações híbridas (supervisionadas e não supervisionadas) em sua implementação, provou ser eficaz no reconhecimento automático (não supervisionado) de padrões multiespectrais e no aprendizado destes padrões, pois para cada uma das entradas dos recortes da área-teste, menor foi o aprendizado necessário para sua classificação alcançar um acerto médio final de 87%, frente às classificações da especialista em imagem. A sua eficácia também foi comprovada frente aos sistemas computacionais testados, com índice Kappa médio de 0,86.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Otolith thermal marking is an efficient method for mass marking hatchery-reared salmon and can be used to estimate the proportion of hatchery fish captured in a mixed-stock fishery. Accuracy of the thermal pattern classification depends on the prominence of the pattern, the methods used to prepare and view the patterns, and the training and experience of the personnel who determine the presence or absence of a particular pattern. Estimating accuracy rates is problematic when no secondary marking is available and no error-free standards exist. Agreement measures, such as kappa (κ), provide a relative measure of the reliability of the determinations when independent readings by two readers are available, but the magnitude of κ can be influenced by the proportion of marked fish. If a third reader is used or if two or more groups of paired readings are examined, latent class models can provide estimates of the error rates of each reader. Applications of κ and latent class models are illustrated by a program providing contribution estimates of hatchery-reared chum and sockeye salmon in Southeast Alaska.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, a cellular neural network with depressing synapses for contrast-invariant pattern classification and synchrony detection is presented, starting from the impulse model of the single-electron tunneling junction. The results of the impulse model and the network are simulated using simulation program with integrated circuit emphasis (SPICE). It is demonstrated that depressing synapses should be an important candidate of robust systems since they exhibit a rapid depression of excitatory postsynaptic potentials for successive presynaptic spikes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

作者设计并实现了一个基于多变元逐步回归的二叉树分类器.在树结构和特征子集的选择中采用了穷举法,比有限制条件的选择更合理更优化.用 FORTRAN 语言实现的“遍历”二叉树,充分利用了 FORTRAN 处理可调数组的能力,并采取适当技巧,从而最大限度地利用了计算机内存.该通用分类器,可用来对任何具有统计数据的模式进行分类.在对白血球的分类中,取得了五类97%,六类92.2%的高识别率.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Spatially periodic vegetation patterns are well known in arid and semi-arid regions around the world. Mathematical models have been developed that attribute this phenomenon to a symmetry-breaking instability. Such models are based on the interplay between competitive and facilitative influences that the vegetation exerts on its own dynamics when it is constrained by arid conditions, but evidence for these predictions is still lacking. Moreover, not all models can account for the development of regularly spaced spots of bare ground in the absence of a soil prepattern. We applied Fourier analysis to high-resolution, remotely sensed data taken at either end of a 40-year interval in southern Niger. Statistical comparisons based on this textural characterization gave us broad-scale evidence that the decrease in rainfall over recent decades in the sub-Saharan Sahel has been accompanied by a detectable shift from homogeneous vegetation cover to spotted patterns marked by a spatial frequency of about 20 cycles km-1. Wood cutting and grazing by domestic animals have led to a much more marked transition in unprotected areas than in a protected reserve. Field measurements demonstrated that the dominant spatial frequency was endogenous rather than reflecting the spatial variation of any pre-existing heterogeneity in soil properties. All these results support the use of models that can account for periodic vegetation patterns without invoking substrate heterogeneity or anisotropy, and provide new elements for further developments, refinements and tests. This study underlines the potential of studying vegetation pattern properties for monitoring climatic and human impacts on the extensive fragile areas bordering hot deserts. Explicit consideration of vegetation self-patterning may also improve our understanding of vegetation and climate interactions in arid areas. © 2006 The Authors.