72 resultados para Pasteurella-multocida
Mannheimiose pulmonar experimental em bezerros: swab nasal e nasofaringeano como auxílio diagnóstico
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Ciência Animal - FMVA
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Characterization of Pasteurellaceae-like bacteria isolated from clinically affected psittacine birds
Resumo:
AIMS: The aim of the present investigation was to identify and characterize Pasteurella-like isolates obtained from clinically affected psittacine birds. METHODS AND RESULTS: A total of 37 isolates from psittacine birds tentatively classified with the family Pasteurellaceae were characterized phenotypically. The genetic relationship was investigated by sequencing of partial rpoB and 16S rRNA genes for selected isolates. The results obtained were compared with the data from 16 reference strains. Nine isolates were identified as Gallibacterium spp., 16 as Volucribacter spp. or Volucribacter-like, while 11 isolates were classified as taxon 44 of Bisgaard. A single isolate was identified as Pasteurella multocida. CONCLUSIONS: Characterization of Pasteurellaceae by traditional methods is often inconclusive because of inconsistent reactions and phenotypic diversity. For the same reason, genotyping is essential to allow proper classification as demonstrated in the present study. SIGNIFICANCE AND IMPACT OF THE STUDY: Limited information exists on the isolation and significance of Pasteurellaceae associated with clinically affected psittacine birds showing signs of digestive and/or respiratory disorders. The present investigations demonstrated that these organisms are widely distributed among clinically affected birds, but isolation of these taxa cannot be unambiguously correlated with the symptoms observed.
Resumo:
Pasteurellaceae species particularly of porcine origin which are closely related to Actinobacillus pleuropneumoniae were analyzed for the presence of analogues to the major A. pleuropneumoniae RTX toxin genes, apxICABD, apxIICA and apxIIICABD and for their expression. Actinobacillus suis contains both apxICABD(var.suis) and apxIICA(var. suis) operons and was shown to produce ApxI and ApxII toxin. Actinobacillus rossii contained the operons apxIICA(var.rossii) and apxIIICABD(var.rossii). However, only the toxin ApxII and not ApxIII could be detected in cultures of A. rossii. The Apx toxins found in A. suis and A. rossi may play a role in virulence of these pathogens. Actinobacillus lignieresii, which was included since it is phylogenetically very closely related to A. pleuropneumoniae, was found to contain a full apxICABD(var.lign.) operon which however lacks the -35 and -10 boxes in the promoter sequences. As expected from these results, no expression of ApxI was detected in A. lignieresii grown under standard culture conditions. Actinobacillus seminis, Actinobacillus equuli, Pasteurella aerogenes, Pasteurella multocida, Haemophilus parasuis, and also Mannheimia (Pasteurella) haemolytica, which is known to secrete leukotoxin, were all shown to be devoid of any of the apx toxin genes and did not produce ApxI, ApxII or ApxIII toxin proteins. However, proteins of slightly lower molecular mass than ApxI, ApxII and ApxIII which showed limited cross-reactions with monospecific, polyclonal anti-ApxI, anti-ApxII and anti-ApxIII were detected on immunoblot analysis of A. equuli, A. seminis and P. aerogenes. The presence of Apx toxins and proteins that imunologically cross react with Apx toxins in porcine Actinobacillus species other than A. pleuropneumoniae can be expected to interfere with serodiagnosis of porcine pleuropneumonia.
Resumo:
This chapter describes the systematics and evolution of Pasteurellaceae with emphasis on new information generated since the 3rd edition of The Prokaryotes which only included chapters dealing with Haemophilus, Actinobacillus, and Pasteurella. A major source of new information for the current chapter has been provided by whole genome sequences now available for many taxa of the family. Some 100 species and species-like taxa have been documented and 18 genera of Pasteurellaceae reported so far. Members of the family include specialized commensals, potential pathogens, or pathogens of vertebrates and mainly survive poorly in other habitats including the external environment. The pathogenic members are of major importance to animal production and human health. Members of Pasteurellaceae have relatively small genomes, probably as a result of adaption to a special habitat. The most important species in veterinary microbiology include Pasteurella multocida, Actinobacillus pleuropneumoniae, [Haemophilus] parasuis, Mannheimia haemolytica, Bibersteinia trehalosi, and Avibacterium paragallinarum, while Haemophilus influenzae and Aggregatibacter actinomycetemcomitans represent the most important species as to human disease. Traditional isolation techniques are still used in both human and veterinary clinical diagnostic laboratories although genetically based diagnostic methods have replaced traditional biochemical/physiological methods for characterization and identification. For all species, MALDI-TOF can now be used as a diagnostic tool. As control and if MALDI-TOF equipment is not at hand, PCR-based specific detection is possible for Pasteurella multocida, Actinobacillus pleuropneumoniae, [Haemophilus] parasuis, Mannheimia haemolytica, Avibacterium paragallinarum, Gallibacterium anatis, Haemophilus influenzae, and Aggregatibacter actinomycetemcomitans. A lot of work has been directed towards identification of virulence factors and understanding host microbe interactions involved in disease.
Resumo:
Emerging infectious diseases are a growing concern in wildlife conservation. Documenting outbreak patterns and determining the ecological drivers of transmission risk are fundamental to predicting disease spread and assessing potential impacts on population viability. However, evaluating disease in wildlife populations requires expansive surveillance networks that often do not exist in remote and developing areas. Here, we describe the results of a community-based research initiative conducted in collaboration with indigenous harvesters, the Inuit, in response to a new series of Avian Cholera outbreaks affecting Common Eiders (Somateria mollissima) and other comingling species in the Canadian Arctic. Avian Cholera is a virulent disease of birds caused by the bacterium Pasteurella multocida. Common Eiders are a valuable subsistence resource for Inuit, who hunt the birds for meat and visit breeding colonies during the summer to collect eggs and feather down for use in clothing and blankets. We compiled the observations of harvesters about the growing epidemic and with their assistance undertook field investigation of 131 colonies distributed over >1200 km of coastline in the affected region. Thirteen locations were identified where Avian Cholera outbreaks have occurred since 2004. Mortality rates ranged from 1% to 43% of the local breeding population at these locations. Using a species-habitat model (Maxent), we determined that the distribution of outbreak events has not been random within the study area and that colony size, vegetation cover, and a measure of host crowding in shared wetlands were significantly correlated to outbreak risk. In addition, outbreak locations have been spatially structured with respect to hypothesized introduction foci and clustered along the migration corridor linking Arctic breeding areas with wintering areas in Atlantic Canada. At present, Avian Cholera remains a localized threat to Common Eider populations in the Arctic; however expanded, community-based surveillance will be required to track disease spread.
Resumo:
Plasmid pB1000 is a mobilizable replicon bearing the bla(ROB-1) beta-lactamase gene that we have recently described in Haemophilus parasuis and Pasteurella multocida animal isolates. Here we report the presence of pB1000 and a derivative plasmid, pB1000', in four Haemophilus influenzae clinical isolates of human origin. Pulsed-field gel electrophoresis showed unrelated patterns in all strains, indicating that the existence of pB1000 in H. influenzae isolates is not the consequence of clonal dissemination. The replicon can be transferred both by transformation and by conjugation into H. influenzae, giving rise to recipients resistant to ampicillin and cefaclor (MICs, > or =64 microg/ml). Stability experiments showed that pB1000 is stable in H. influenzae without antimicrobial pressure for at least 60 generations. Competition experiments between isogenic H. influenzae strains with and without pB1000 revealed a competitive disadvantage of 9% per 10 generations for the transformant versus the recipient. The complete nucleotide sequences of nine pB1000 plasmids from human and animal isolates, as well as the epidemiological data, suggest that animal isolates belonging to the Pasteurellaceae act as an antimicrobial resistance reservoir for H. influenzae. Further, since P. multocida is the only member of this family that can colonize both humans and animals, we propose that P. multocida is the vehicle for the transport of pB1000 between animal- and human-adapted members of the Pasteurellaceae.
Resumo:
L'auíeur a vérifié la susceptibilité de deux espèces de rongeurs domestiques de la ville de Recife. Etat du Pernambuco, R. norvegicus et Rattus rattus frugivurus, les comparant aux souris albinos de la souche "Swiss" avec deux souches de P. pestis dont une était isolée au municipe d'Exu, Etat du Pernambuco âenommée PEXU 19 et Vautre provenante du Venezuela dite RANGEL. Les deux espèces de rongeurs ont montré une resistence modérée par rapport aux deux souches de P. pestis tandis que les souris ont révélé d'être hautement susceptibles.
Resumo:
The author studied the susceptibility of the wild rodent, Sciurus alphonsei (Sciuridae) from Brazil to Pasteurella pestis. Two strains of P. pestis isolated from wild rodents were used: one, P. EXU 19, was isolated from O. subflavus in the county of Em, Pernambuco (Brazil), and other, RANGEL, isolated from S. hispidus of Camp. Rangel (Venezuela) . Six animais were tested by inoculation through different routes (percutaneous, subcutaneous and peritoneal). All the animals died as a result of the infection.
Resumo:
O autor estudou roedores silvestres provenientes de uma área não pestosa no Estado de Pernambuco quanto à susceptibilidade em relação a Pasteurella pestis. Os resultados obtidos mostraram que os animais são suscetíveis ao germe.
Resumo:
Studies were made on the biochemical behavior of 100 strains of P.pestis isolated in Northeastern Brazil with regard to production of nitrous acid, reduction of nitrates to nitrltes, and aciáification of glycerol. Results showed that 98 strains can be classified as "orientalis variety", while the remaining two could not be included in any of the existing "varieties".
Resumo:
Os autores decreveram uma nova bactéria - Pasteurella intermedia n. ap., obtida pela inoculação em cobaio de 2 cc. de sangue total de um indivíduo morto de bronco-pneumonia e suspeito de ter a forma grave de Tifo exantemático neotrópico. Têm a impressão que a Pasteurella marsupialis e a P. intermedia, constituem um grupo à parte, bem definido, dentro das Pasteurellas. Muito pequenas, de grande e persistente poder patogênico para os animais comuns de laboratório, mesmo quando as amostras das bactérias são conservadas pelos replantios em agar-comum, na temperatura e iluminação comum em laboratórios, durante anos. Estas duas Pasteurellas, ao contrário das demais, têm alto e inconfundível poder antígenico, para a formação de aglutininas e fixação do complemento e dão com constância uma "reação testicular" em cobaios machos, quando injetadas pela via intra-peritoneal, febre alta, esplenomegalia constante e às vezes notável, prestando-se à confusão para o diagnóstico diferencial e experimental com a raça VB do Tifo exantemático neotrófico no Brasil (Moléstia de Pisa, Gomes e Mayer).