992 resultados para PLASMAS
Resumo:
This article presents the results on the diagnostics and numerical modeling of low-frequency (∼460 KHz) inductively coupled plasmas generated in a cylindrical metal chamber by an external flat spiral coil. Experimental data on the electron number densities and temperatures, electron energy distribution functions, and optical emission intensities of the abundant plasma species in low/intermediate pressure argon discharges are included. The spatial profiles of the plasma density, electron temperature, and excited argon species are computed, for different rf powers and working gas pressures, using the two-dimensional fluid approach. The model allows one to achieve a reasonable agreement between the computed and experimental data. The effect of the neutral gas temperature on the plasma parameters is also investigated. It is shown that neutral gas heating (at rf powers≥0.55kW) is one of the key factors that control the electron number density and temperature. The dependence of the average rf power loss, per electron-ion pair created, on the working gas pressure shows that the electron heat flux to the walls appears to be a critical factor in the total power loss in the discharge.
Resumo:
Charging of micron-size particulates, often appearing in fluorocarbon plasma etching experiments, is considered. It is shown that in inductively coupled and microwave slot-excited plasmas of C4F8 and Ar gas mixtures, the equilibrium particle charge and charge relaxation processes are controlled by a combination of microscopic electron, atomic (Ar+ and F+), and molecular ion (CF+ 3, CF+ 2, and CF+) currents. The impact of molecular ion currents on the particulate charging and charge relaxation processes is analyzed. It is revealed that in low-power (<0.5 kW) microwave slot-excited plasmas, the impact of the combined molecular ion current to the total positive microscopic current on the particle can be as high as 40%. The particulate charge relaxation rate in fluorocarbon plasmas appears to exceed 108 s-1, which is almost one order of magnitude higher than that from purely argon plasmas. This can be attributed to the impact of positive currents of fluorocarbon molecular ions, as well as to the electron density fluctuations with particle charge, associated with electron capture and release by the particulates.
Resumo:
Operation and mode jumps in low-frequency (500 kHz) radio-frequency inductively coupled plasmas are investigated. The discharge is driven by a flat inductive coil which can excite the electrostatic (E) and electromagnetic (H) discharge modes. The power transfer efficiency and mode transition behavior are studied. It is found that the power reflection coefficient as a function of the input power is minimal in the vicinity of the mode transitions and exhibits hysteresis, which is also observed when the operating gas pressure is varied.
Resumo:
The results of comprehensive experimental studies of the operation, stability, and plasma parameters of the low-frequency (0.46 MHz) inductively coupled plasmas sustained by the internal oscillating rf current are reported. The rf plasma is generated by using a custom-designed configuration of the internal rf coil that comprises two perpendicular sets of eight currents in each direction. Various diagnostic tools, such as magnetic probes, optical emission spectroscopy, and an rf-compensated Langmuir probe were used to investigate the electromagnetic, optical, and global properties of the argon plasma in wide ranges of the applied rf power and gas feedstock pressure. It is found that the uniformity of the electromagnetic field inside the plasma reactor is improved as compared to the conventional sources of inductively coupled plasmas with the external flat coil configuration. A reasonable agreement between the experimental data and computed electromagnetic field topography inside the chamber is reported. The Langmuir probe measurements reveal that the spatial profiles of the electron density, the effective electron temperature, plasma potential, and electron energy distribution/probability functions feature a high degree of the radial and axial uniformity and a weak azimuthal dependence, which is consistent with the earlier theoretical predictions. As the input rf power increases, the azimuthal dependence of the global plasma parameters vanishes. The obtained results demonstrate that by introducing the internal oscillated rf currents one can noticeably improve the uniformity of electromagnetic field topography, rf power deposition, and the plasma density in the reactor.
Resumo:
A global electromagnetic model of an inductively coupled plasma sustained by an internal oscillating current sheet in a cylindrical metal vessel is developed. The electromagnetic field structure, profiles of the rf power transferred to the plasma electrons, electron/ion number density, and working points of the discharge are studied, by invoking particle and power balance. It is revealed that the internal rf current with spatially invariable phase significantly improves the radial uniformity of the electromagnetic fields and the power density in the chamber as compared with conventional plasma sources with external flat spiral inductive coils. This configuration offers the possibility of controlling the rf power deposition in the azimuthal direction.
Resumo:
A custom-designed inductively coupled plasma assisted radio-frequency magnetron sputtering deposition system has been used to fabricate N-doped p-type ZnO (ZnO:N) thin films on glass substrates from a sintered ZnO target in a reactive Ar + N2 gas mixture. X-ray diffraction and scanning electron microscopy analyses show that the ZnO:N films feature a hexagonal crystal structure with a preferential (002) crystallographic orientation and grow as vertical columnar structures. Hall effect and X-ray photoelectron spectroscopy analyses show that N-doped ZnO thin films are p-type with a hole concentration of 3.32 × 1018 cm- 3 and mobility of 1.31 cm2 V- 1 s- 1. The current-voltage measurement of the two-layer structured ZnO p-n homojunction clearly reveals the rectifying ability of the p-n junction. The achievement of p-type ZnO:N thin films is attributed to the high dissociation ability of the high-density inductively coupled plasma source and effective plasma-surface interactions during the growth process.
Resumo:
A comparative study involving both experimental and numerical investigations was made to resolve a long-standing problem of understanding electron conductivity mechanism across magnetic field in low-temperature plasmas. We have calculated the plasma parameters from experimentally obtained electric field distribution, and then made a 'back' comparison with the distributions of electron energy and plasma density obtained in the experiment. This approach significantly reduces an influence of the assumption about particular phenomenology of the electron conductivity in plasma. The results of the experiment and calculations made by this technique have showed that the classical conductivity is not capable of providing realistic total current and electron energy, whereas the phenomenological anomalous Bohm mobility has demonstrated a very good agreement with the experiment. These results provide an evidence in favor of the Bohm conductivity, thus making it possible to clarify this pressing long-living question about the main driving mechanism responsible for the electron transport in low-temperature plasmas.
Resumo:
An innovative and effective approach based on low-pressure, low-frequency, thermally nonequilibrium, high-density inductively coupled plasmas is proposed to synthesize device-quality nanocrystalline silicon (nc-Si) thin films at room temperature and with very competitive growth rates. The crystallinity and microstructure properties (including crystal structure, crystal volume fraction, surface morphology, etc.) of this nanostructured phase of Si can be effectively tailored in broad ranges for different device applications by simply varying the inductive rf power density from 25.0 to 41.7 mW/cm3. In particular, at a moderate rf power density of 41.7 mW/cm3, the nc-Si films feature a very high growth rate of 2.37 nm/s, a high crystalline fraction of 86%, a vertically aligned columnar structure with the preferential (111) growth orientation and embedded Si quantum dots, as well as a clean, smooth and defect-free interface. We also propose the formation mechanism of nc-Si thin films which relates the high electron density and other unique properties of the inductively coupled plasmas and the formation of the nanocrystalline phase on the Si surface.
Resumo:
Nanocrystalline silicon thin films were deposited on single-crystal silicon and glass substrates simultaneously by inductively coupled plasma-assisted chemical vapor deposition from the reactive silane reactant gas diluted with hydrogen at a substrate temperature of 200 °C. The effect of hydrogen dilution ratio X (X is defined as the flow rate ratio of hydrogen to silane gas), ranging from 1 to 20, on the structural and optical properties of the deposited films, is extensively investigated by Raman spectroscopy, X-ray diffraction, Fourier transform infrared absorption spectroscopy, UV/VIS spectroscopy, and scanning electron microscopy. Our experimental results reveal that, with the increase of the hydrogen dilution ratio X, the deposition rate Rd and hydrogen content CH are reduced while the crystalline fraction Fc, mean grain size δ and optical bandgap ETauc are increased. In comparison with other plasma enhanced chemical vapor deposition methods of nanocrystalline silicon films where a very high hydrogen dilution ratio X is routinely required (e.g. X > 16), we have achieved nanocrystalline silicon films at a very low hydrogen dilution ratio of 1, featuring a high deposition rate of 1.57 nm/s, a high crystalline fraction of 67.1%, a very low hydrogen content of 4.4 at.%, an optical bandgap of 1.89 eV, and an almost vertically aligned columnar structure with a mean grain size of approximately 19 nm. We have also shown that a sufficient amount of atomic hydrogen on the growth surface essential for the formation of nanocrystalline silicon is obtained through highly-effective dissociation of silane and hydrogen molecules in the high-density inductively coupled plasmas. © 2009 The Royal Society of Chemistry.
Resumo:
Silicon thin films with a variable content of nanocrystalline phase were deposited on single-crystal silicon and glass substrates by inductively coupled plasma-assisted chemical vapor deposition using a silane precursor without any hydrogen dilution in the low substrate temperature range from 100 to 300 °C. The structural and optical properties of the deposited films are systematically investigated by Raman spectroscopy, x-ray diffraction, Fourier transform infrared absorption spectroscopy, UV/vis spectroscopy, scanning electron microscopy and high-resolution transmission electron microscopy. It is shown that the structure of the silicon thin films evolves from the purely amorphous phase to the nanocrystalline phase when the substrate temperature is increased from 100 to 150 °C. It is found that the variations of the crystalline fraction fc, bonded hydrogen content CH, optical bandgap ETauc, film microstructure and growth rate Rd are closely related to the substrate temperature. In particular, at a substrate temperature of 300 °C, the nanocrystalline Si thin films of our interest feature a high growth rate of 1.63nms-1, a low hydrogen content of 4.0at.%, a high crystalline fraction of 69.1%, a low optical bandgap of 1.55eV and an almost vertically aligned columnar structure with a mean grain size of approximately 10nm. It is also shown that the low-temperature synthesis of nanocrystalline Si thin films without any hydrogen dilution is attributed to the outstanding dissociation ability of the high-density inductively coupled plasmas and effective plasma-surface interactions during the growth process. Our results offer a highly effective yet simple and environmentally friendly technique to synthesize high-quality nanocrystalline Si films, vitally needed for the development of new-generation solar cells and other emerging nanotechnologies.
Resumo:
It is commonly believed that in order to synthesize high-quality hydrogenated amorphous silicon carbide (a-Si1-xCx : H) films at competitive deposition rates it is necessary to operate plasma discharges at high power regimes and with heavy hydrogen dilution. Here we report on the fabrication of hydrogenated amorphous silicon carbide films with different carbon contents x (ranging from 0.09 to 0.71) at high deposition rates using inductively coupled plasma (ICP) chemical vapour deposition with no hydrogen dilution and at relatively low power densities (∼0.025 W cm -3) as compared with existing reports. The film growth rate R d peaks at x = 0.09 and x = 0.71, and equals 18 nm min-1 and 17 nm min-1, respectively, which is higher than other existing reports on the fabrication of a-Si1-xCx : H films. The extra carbon atoms for carbon-rich a-Si1-xCx : H samples are incorporated via diamond-like sp3 C-C bonding as deduced by Fourier transform infrared absorption and Raman spectroscopy analyses. The specimens feature a large optical band gap, with the maximum of 3.74 eV obtained at x = 0.71. All the a-Si1-xCx : H samples exhibit low-temperature (77 K) photoluminescence (PL), whereas only the carbon-rich a-Si1-xCx : H samples (x ≥ 0.55) exhibit room-temperature (300 K) PL. Such behaviour is explained by the static disorder model. High film quality in our work can be attributed to the high efficiency of the custom-designed ICP reactor to create reactive radical species required for the film growth. This technique can be used for a broader range of material systems where precise compositional control is required. © 2008 IOP Publishing Ltd.
Resumo:
The conditions for carbon nanotube synthesis in the bulk of arc discharges and on plasma-exposed solid surfaces are compared to reveal the main distinguishing features of the growth kinetics and explain the striking difference between the growth of the nanotubes in both cases. It is shown that this difference is due to very different exposure of the discharge-synthesized and surface-bound nanotubes to ion fluxes, with the ratio of the ion fluxes collected per nanotube in the two cases reaching up to six orders of magnitude. Depending on the plasma parameters and the sizes of the nanotubes and metal catalyst particles, four distinct growth modes of the nanotubes in the plasma bulk have been identified. These results shed light on why single-walled carbon nanotube growth is more favourable in the bulk of arc plasmas rather than on plasma-exposed surfaces.
Resumo:
Reliable calculations of the electron/ion energy losses in low-pressure thermally nonequilibrium low-temperature plasmas are indispensable for predictive modeling related to numerous applications of such discharges. The commonly used simplified approaches to calculation of electron/ion energy losses to the chamber walls use a number of simplifying assumptions that often do not account for the details of the prevailing electron energy distribution function (EEDF) and overestimate the contributions of the electron losses to the walls. By direct measurements of the EEDF and careful calculation of contributions of the plasma electrons in low-pressure inductively coupled plasmas, it is shown that the actual losses of kinetic energy of the electrons and ions strongly depend on the EEDF. It is revealed that the overestimates of the total electron/ion energy losses to the walls caused by improper assumptions about the prevailing EEDF and about the ability of the electrons to pass through the repulsive potential of the wall may lead to significant overestimates that are typically in the range between 9 and 32%. These results are particularly important for the development of power-saving strategies for operation of low-temperature, low-pressure gas discharges in diverse applications that require reasonably low power densities. © 2008 American Institute of Physics.
Resumo:
Management of nanopowder and reactive plasma parameters in a low-pressure RF glow discharge in silane is studied. It is shown that the discharge control parameters and reactor volume can be adjusted to ensure lower abundance of nanopowders, which is one of the requirements of the plasma-assisted fabrication of low-dimensional quantum nanostructures. The results are relevant to micro- and nanomanufacturing technologies employing low-pressure glow discharge plasmas of silane-based gas mixtures.
Resumo:
The transition between the two stable operation regimes (E and H discharge modes) in inductively coupled argon plasmas has been studied experimentally and theoretically. Analogy with other physical phenomena exhibiting hysteresis has been drawn. Analysis of power balance, electromagnetic field, plasma parameters, densities of the excited states, and optical emission spectra shows that the hysteresis may be due to nonlinearities associated with step-wise ionization through excited states of the argon atoms.