921 resultados para Odontogenic tumour
Resumo:
A new optimal control model of the interactions between a growing tumour and the host immune system along with an immunotherapy treatment strategy is presented. The model is based on an ordinary differential equation model of interactions between the growing tu- mour and the natural killer, cytotoxic T lymphocyte and dendritic cells of the host immune system, extended through the addition of a control function representing the application of a dendritic cell treat- ment to the system. The numerical solution of this model, obtained from a multi species Runge–Kutta forward-backward sweep scheme, is described. We investigate the effects of varying the maximum al- lowed amount of dendritic cell vaccine administered to the system and find that control of the tumour cell population is best effected via a high initial vaccine level, followed by reduced treatment and finally cessation of treatment. We also found that increasing the strength of the dendritic cell vaccine causes an increase in the number of natural killer cells and lymphocytes, which in turn reduces the growth of the tumour.
Resumo:
In this thesis, three mathematical models describing the growth of solid tumour incorporating the host tissue and the immune system response are developed and investigated. The initial model describes the dynamics of the growing tumour and immune response before being extended in the second model by introducing a time-varying dendritic cell-based treatment strategy. Finally, in the third model, we present a mathematical model of a growing tumour using a hybrid cellular automata. These models can provide information to pre-experimental work to assist in designing more effective and efficient laboratory experiments related to tumour growth and interactions with the immune system and immunotherapy.
Resumo:
The cancer stem cell hypothesis states that tumours arise from cells with the ability to self-renew and differentiate into multiple cell types, and that these cells persist in tumors as a distinct population that can cause disease relapse and hence metastasis. The crux of this hypothesis is that these cells are the only cells capable of, by themselves, giving rise to new tumours. What proportion of a tumour consists of these stem cells, where are they localised, how are they regulated, and how can we identify them? The stromal cells embedded within the extracellular matrix (ECM) not only provide a scaffold but also produce ECM constituents for use by stem cells. Heparan sulfate proteoglycans (HSPGs) are ubiquitous to this cell niche and interact with a large number of ligands including growth factors, their receptors, and ECM structural components. It is still unclear whether ECM degradation and subsequent metastasis is a result of proteases produced by the tumour cells themselves or by cells within the stromal compartment. The identification of the cellular origin of cancer stem cells along with microenvironmental changes involved in the initiation, progression and the malignant conversion of all cancers is critical to the development of targeted therapeutics. As ubiquitous members of the ECM microenvironment and hence the cancer cell niche, HSPGs are candidates for a central role in these processes.
Resumo:
To examine matrix metalloproteinase (MMP) and tissue inhibitor of metalloproteinases (TIMP) mRNA levels in archival breast cancer biopsies, we employed microdissection to separate tumour tissue from the surrounding breast tissue, or stroma and RT-PCR to determine gross qualitative and small quantitative differences in the patterns of expression. In this study, a significant correlation (p < 0.05, by Mann-Whitney U analysis) between TIMP-2 expression and lymph node involvement was identified, while MMP-11 and TIMP-1 expression patterning also significantly (p < 0.05) differed between those tumours showing calcification and those that did not. When compared by Spearmans’ ρ correlation analysis, a significant association (p < 0.05, ρ = 0.404) was identified in the pattern of MMP-2 and MMP-9 gene expression. In this study, the use of microdissection and a systematic strategy of RT-PCR analysis have allowed us to investigate localized MMP and MMP inhibitor expression within breast tumours. We have identified patterns of gene expression that may further reveal aspects of breast carcinogenesis, and a robust method for examining changes in clinically important genes using archival biopsies and across stroma-tumour boundaries.
Resumo:
To determine whether [18F]-fluorodeoxyglucose-positron emission tomography (FDG-PET) could predict the pathological response in oesophageal cancer after only the first week of neoadjuvant chemoradiation. Thirty-two patients with localised oesophageal cancer had a pretreatment PET scan and a repeat after the first week of chemoradiation. The change in mean maximum standardised uptake value (SUV) and volume of metabolically active tissue (MTV) was compared with the tumour regression grade (TRG) in the final histology. Those who achieved a TRG of 1 and 2 were deemed responders and 3-5 nonresponders. In the responders (28%), the SUV fell from 12.6 (±6.3) to 8.1 (±2.9) after 1 week of chemoradiation (P = 0.070). In nonresponders (72%), the results were 9.7 (±5.4) and 7.1 (±3.8), respectively (P = 0.003). The MTV in responders fell from 36.6 (±22.7) to 22.3 (±10.4) cm3 (P = 0.180), while in nonresponders, this fell from 35.9 (±36.7) to 31.9 (±52.7) cm3 (P = 0.405). There were no significant differences between responders and nonresponders. The hypothesis that early repeat FDG-PET scanning may predict histomorphologic response was not proven. This may reflect an inflammatory effect of radiation that obscures tumour-specific metabolic changes at this time. This assessment may have limited application in predicting response to multimodal regimens for oesophageal cancer. © 2006 Cancer Research UK.
Resumo:
It has been reported that genes regulating apoptosis may play a role in tumoral angiogenesis. This study examined the relationship between tumour vascularization, a measure of tumour angiogenesis, and bcl-2 and p53 expression in operable non-small-cell lung cancer (NSCLC). The relationship between bcl-2, p53 and tumour vascularization and epidermal-growth-factor- receptor(EGFR) and c-erbB-2 expression was also studied. Tissue sections from resected tumour specimens of 107 NSCLC patients were evaluated immunohistochemically for vascular grade and bcl-2, p53, EGFR and c-erbB-2 expression. bcl-2 expression was found in 20/107 (19%) cases and was associated with squamous-cell histology (p = 0.03). A strong inverse relationship was found between bcl-2 expression and vascular grade (p = 0.005). All c-erbB-2-positive cases were negative for bcl-2 expression (p = 0.01). Overall no association was found between c-erbB-2 expression and vascular grade. However, in bcl-2-negative cases positive c-erbB-2 expression correlated with low angiogenesis (p = 0.05). No relationship was found between p53 and EGFR expression and bcl-2, c-erbB-2 or vascular grade. The improved prognosis reported in bcl-2-positive NSCLC may be related to low tumour vascularization. The results suggest that the anti-apoptotic gene bcl- 2 plays a role in regulating tumour angiogenesis. Since normal lung epithelium expresses bcl-2, a sequence of tumour progression involving loss of bcl-2, then activation of c-erbB-2 or increase in tumour vascularization is proposed.
Resumo:
Background Tumour necrosis (TN) is recognized to be a consequence of chronic cellular hypoxia. TN and hypoxia correlate with poor prognosis in solid tumours. Methods In a retrospective study the prognostic implications of the extent of TN was evaluated in non-small cell lung cancer (NSCLC) and correlated with clinicopathological variables and expression of epidermal growth factor receptor, Bcl-2, p53 and matrix metalloproteinase-9 (MMP-9). Tissue specimens from 178 surgically resected cases of stage I-IIIA NSCLC with curative intent were studied. The specimens were routinely processed, formalin-fixed and paraffin-embedded. TN was graded as extensive or either limited or absent by two independent observers; disagreements were resolved using a double-headed microscope. The degree of reproducibility was estimated by re-interpreting 40 randomly selected cases after a 4 month interval. Results Reproducibility was attained in 36/40 cases, Kappa score=0.8 P<0.001. TN correlated with T-stage (P=0.001), platelet count (P=0.004) and p53 expression (P=0.031). Near significant associations of TN with N-stage (P=0.063) and MMP-9 expression (P=0.058) were seen. No association was found with angiogenesis (P=0.98). On univariate (P=0.0016) and multivariate analysis (P=0.023) TN was prognostic. Conclusion These results indicate that extensive TN reflects an aggressive tumour phenotype in NSCLC and may improve the predictive power of the TMN staging system. The lack of association between TN and angiogenesis may be important although these variables were not evaluated on serial sections. © 2002 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
The existence of travelling wave solutions to a haptotaxis dominated model is analysed. A version of this model has been derived in Perumpanani et al. (1999) to describe tumour invasion, where diffusion is neglected as it is assumed to play only a small role in the cell migration. By instead allowing diffusion to be small, we reformulate the model as a singular perturbation problem, which can then be analysed using geometric singular perturbation theory. We prove the existence of three types of physically realistic travelling wave solutions in the case of small diffusion. These solutions reduce to the no diffusion solutions in the singular limit as diffusion as is taken to zero. A fourth travelling wave solution is also shown to exist, but that is physically unrealistic as it has a component with negative cell population. The numerical stability, in particular the wavespeed of the travelling wave solutions is also discussed.
Resumo:
The spread of cells from the primary site of a solid tumour to distant sites remains the major cause of disease and death associated with these cancers. For tumour cells to spread, or metastasize, they must modify their 'anchored' state and detach from their neighbouring cells; migrate through tissues into the blood and lymph systems; survive in these circulation systems; and then leave the vessels at an appropriate site to form another tumour1. Many of these events are favoured by conversions between two cellular states — the epithelial and mesenchymal phenotypes. But the role of these transitions in cancer metastasis is controversial. Writing in Cancer Cell, Tsai et al.2 and Ocaña et al.3 help to clarify this issue...
Resumo:
Gene expression profiling using microarrays and xenograft transplants of human cancer cell lines are both popular tools to investigate human cancer. However, the undefined degree of cross hybridization between the mouse and human genomes hinders the use of microarrays to characterize gene expression of both the host and the cancer cell within the xenograft. Since an increasingly recognized aspect of cancer is the host response (or cancer-stroma interaction), we describe here a bioinformatic manipulation of the Affymetrix profiling that allows interrogation of the gene expression of both the mouse host and the human tumour. Evidence of microenvironmental regulation of epithelial mesenchymal transition of the tumour component in vivo is resolved against a background of mesenchymal gene expression. This tool could allow deeper insight to the mechanism of action of anti-cancer drugs, as typically novel drug efficacy is being tested in xenograft systems.
Resumo:
Mortality in breast cancer is linked to metastasis and recurrence yet there is no acceptable biological model for cancer relapse. We hypothesise that there might exist primary tumour cells capable of escaping surgery by migration and resisting radiotherapy and chemotherapy to cause cancer recurrence. We investigated this possibility in invasive ductal carcinoma (IDC) tissue and observed the presence of solitary primary tumour cells (SPCs) in the dense collagen stroma that encapsulates intratumoural cells (ICs). In IDC tissue sections, collagen was detected with either Masson's Trichrome or by second harmonics imaging. Cytokeratin-19 (CK-19) and vimentin (VIM) antibodies were, respectively, used to identify epithelial-derived tumour cells and to indicate epithelial to mesenchymal transition (EMT). Confocal/multiphoton microscopy showed that ICs from acini were mainly CK-19 +ve and were encapsulated by dense stromal collagen. Within the stroma, SPCs were detected by their staining for both CK-19 and VIM (confirming EMT). ICs and SPCs were subsequently isolated by laser capture microdissection followed by multiplex tandem-PCR studies. SPCs were found to be enriched for pro-migratory and anti-proliferative genes relative to ICs. In vitro experiments using collagen matrices at 20 mg/cm 3, similar in density to tumour matrices, demonstrated that SPC-like cells were highly migratory but dormant, phenotypes that recapitulated the genotypes of SPCs in clinical tissue. These data suggest that SPCs located at the breast cancer perimeter are invasive and dormant such that they may exceed surgical margins and resist local and adjuvant therapies. This study has important connotations for a role of SPCs in local recurrence.
Resumo:
The progression of a tumour from one of benign and delimited growth to one that is invasive and metastatic is the major cause of poor clinical outcome in cancer patients. The invasion and metastasis of tumours is a highly complex and multistep process that requires a tumour cell to modulate its ability to adhere, degrade the surrounding extracellular matrix, migrate, proliferate at a secondary site and stimulate angiogenesis. Knowledge of the process has greatly increased and this has resulted in the identification of a number of molecules that are fundamental to the process. The involvement of these molecules has been shown to relate not only to the survival and proliferation of the tumour cell but, also to the processes of tumour cell adhesion, migration, and the tumour cells ability to degrade and escape the primary site as well as play a role in angiogenesis. These molecules may provide important therapeutic targets that represent the ability to target specific steps in the process of invasion and metastasis and provide additional therapies. The review focuses on representative key targets in each of these processes and summarises the state of play in each case.
Resumo:
This paper examines the effect of anisotropic growth on the evolution of mechanical stresses in a linear-elastic model of a growing, avascular tumour. This represents an important improvement on previous linear-elastic models of tissue growth since it has been shown recently that spatially-varying isotropic growth of linear-elastic tissues does not afford the necessary stress-relaxation for a steady-state stress distribution upon reaching a nutrient-regulated equilibrium size. Time-dependent numerical solutions are developed using a Lax-Wendroff scheme, which show the evolution of the tissue stress distributions over a period of growth until a steady-state is reached. These results are compared with the steady-state solutions predicted by the model equations, and key parameters influencing these steady-state distributions are identified. Recommendations for further extensions and applications of this model are proposed.
Resumo:
One of the hallmarks of cancer is the ability to activate invasion and metastasis (Hanahan et al., 2011). Cancer morbidity and mortality are largely related to the spread of the primary, localised tumour to adjacent and distant sites (Pantel et al., 2004). Appropriate management and treatment decisions of predicting metastatic disease at the time of diagnosis is thus crucial, which supports better understanding of the metastatic process. There are common events that occur during metastasis: dissociation from the primary tumour mass, reorganisation/remodelling of extracellular matrix, cell migration, recognition and transversal of endothelial cells and the vascular circulation and lodgement and proliferation within ectopic stroma (Wells, 2006). One of the key and initial events is the increased capability of cancer cells to move, escaping the regulation of normal physiological control. The cellular cytoskeleton plays an important role in cancer cell motility and active cytoskeletal rearrangement can result in metastatic disease. This active change in cytoskeletal dynamics results in manipulation of plasma membrane and cellular balance between cellular adhesion and motility which in turn determines cancer cell movement. Members of the tetraspanins play important roles in regulation of cancer migration and cancer-endothelial cell interactions, which are critical for cancer invasion and metastasis. Their involvements in active cytoskeletal dynamics, cancer metastasis and potential clinical application will be discussed in this review. In particular, tetraspanin member, CD151, is highlighted for its major role in cancer invasion and metastasis
Resumo:
The current study sought to explore whether the subcutaneous administration of lymph-targeted dendrimers, conjugated with a model chemotherapeutic (methotrexate, MTX), was able to enhance anticancer activity against lymph node metastases. The lymphatic pharmacokinetics and antitumour activity of PEGylated polylysine dendrimers conjugated to MTX [D-MTX(OH)] via a tumour-labile hexapeptide linker was examined in rats and compared to a similar system where MTX was α-carboxyl O-tert-butylated [D-MTX(OtBu)]. The latter has previously been shown to exhibit longer plasma circulation times. D-MTX(OtBu) was well absorbed from the subcutaneous injection site via the lymph, and 3 to 4%/g of the dose was retained by sentinel lymph nodes. In contrast, D-MTX(OH) showed limited absorption from the subcutaneous injection site, but absorption was almost exclusively via the lymph. The retention of D-MTX(OH) by sentinel lymph nodes was also significantly elevated (approximately 30% dose/g). MTX alone was not absorbed into the lymph. All dendrimers displayed lower lymph node targeting after intravenous administration. Despite significant differences in the lymph node retention of D-MTX(OH) and D-MTX(OtBu) after subcutaneous and intravenous administration, the growth of lymph node metastases was similarly inhibited. In contrast, the administration of MTX alone did not significantly reduce lymph node tumour growth. Subcutaneous administration of drug-conjugated dendrimers therefore provides an opportunity to improve drug deposition in downstream tumour-burdened lymph nodes. In this case, however, increased lymph node biodistribution did not correlate well with antitumour activity, possibly suggesting constrained drug release at the site of action.