370 resultados para OPTIMALITY
Resumo:
This paper derives an efficient algorithm for constructing sparse kernel density (SKD) estimates. The algorithm first selects a very small subset of significant kernels using an orthogonal forward regression (OFR) procedure based on the D-optimality experimental design criterion. The weights of the resulting sparse kernel model are then calculated using a modified multiplicative nonnegative quadratic programming algorithm. Unlike most of the SKD estimators, the proposed D-optimality regression approach is an unsupervised construction algorithm and it does not require an empirical desired response for the kernel selection task. The strength of the D-optimality OFR is owing to the fact that the algorithm automatically selects a small subset of the most significant kernels related to the largest eigenvalues of the kernel design matrix, which counts for the most energy of the kernel training data, and this also guarantees the most accurate kernel weight estimate. The proposed method is also computationally attractive, in comparison with many existing SKD construction algorithms. Extensive numerical investigation demonstrates the ability of this regression-based approach to efficiently construct a very sparse kernel density estimate with excellent test accuracy, and our results show that the proposed method compares favourably with other existing sparse methods, in terms of test accuracy, model sparsity and complexity, for constructing kernel density estimates.
Resumo:
A very efficient learning algorithm for model subset selection is introduced based on a new composite cost function that simultaneously optimizes the model approximation ability and model robustness and adequacy. The derived model parameters are estimated via forward orthogonal least squares, but the model subset selection cost function includes a D-optimality design criterion that maximizes the determinant of the design matrix of the subset to ensure the model robustness, adequacy, and parsimony of the final model. The proposed approach is based on the forward orthogonal least square (OLS) algorithm, such that new D-optimality-based cost function is constructed based on the orthogonalization process to gain computational advantages and hence to maintain the inherent advantage of computational efficiency associated with the conventional forward OLS approach. Illustrative examples are included to demonstrate the effectiveness of the new approach.
Resumo:
The most widely used updating rule for non-additive probalities is the Dempster-Schafer rule. Schmeidles and Gilboa have developed a model of decision making under uncertainty based on non-additive probabilities, and in their paper “Updating Ambiguos Beliefs” they justify the Dempster-Schafer rule based on a maximum likelihood procedure. This note shows in the context of Schmeidler-Gilboa preferences under uncertainty, that the Dempster-Schafer rule is in general not ex-ante optimal. This contrasts with Brown’s result that Bayes’ rule is ex-ante optimal for standard Savage preferences with additive probabilities.
Resumo:
Consumption is an important macroeconomic aggregate, being about 70% of GNP. Finding sub-optimal behavior in consumption decisions casts a serious doubt on whether optimizing behavior is applicable on an economy-wide scale, which, in turn, challenge whether it is applicable at all. This paper has several contributions to the literature on consumption optimality. First, we provide a new result on the basic rule-of-thumb regression, showing that it is observational equivalent to the one obtained in a well known optimizing real-business-cycle model. Second, for rule-of-thumb tests based on the Asset-Pricing Equation, we show that the omission of the higher-order term in the log-linear approximation yields inconsistent estimates when lagged observables are used as instruments. However, these are exactly the instruments that have been traditionally used in this literature. Third, we show that nonlinear estimation of a system of N Asset-Pricing Equations can be done efficiently even if the number of asset returns (N) is high vis-a-vis the number of time-series observations (T). We argue that efficiency can be restored by aggregating returns into a single measure that fully captures intertemporal substitution. Indeed, we show that there is no reason why return aggregation cannot be performed in the nonlinear setting of the Pricing Equation, since the latter is a linear function of individual returns. This forms the basis of a new test of rule-of-thumb behavior, which can be viewed as testing for the importance of rule-of-thumb consumers when the optimizing agent holds an equally-weighted portfolio or a weighted portfolio of traded assets. Using our setup, we find no signs of either rule-of-thumb behavior for U.S. consumers or of habit-formation in consumption decisions in econometric tests. Indeed, we show that the simple representative agent model with a CRRA utility is able to explain the time series data on consumption and aggregate returns. There, the intertemporal discount factor is significant and ranges from 0.956 to 0.969 while the relative risk-aversion coefficient is precisely estimated ranging from 0.829 to 1.126. There is no evidence of rejection in over-identifying-restriction tests.
Resumo:
The objective of this paper is to test for optimality of consumption decisions at the aggregate level (representative consumer) taking into account popular deviations from the canonical CRRA utility model rule of thumb and habit. First, we show that rule-of-thumb behavior in consumption is observational equivalent to behavior obtained by the optimizing model of King, Plosser and Rebelo (Journal of Monetary Economics, 1988), casting doubt on how reliable standard rule-of-thumb tests are. Second, although Carroll (2001) and Weber (2002) have criticized the linearization and testing of euler equations for consumption, we provide a deeper critique directly applicable to current rule-of-thumb tests. Third, we show that there is no reason why return aggregation cannot be performed in the nonlinear setting of the Asset-Pricing Equation, since the latter is a linear function of individual returns. Fourth, aggregation of the nonlinear euler equation forms the basis of a novel test of deviations from the canonical CRRA model of consumption in the presence of rule-of-thumb and habit behavior. We estimated 48 euler equations using GMM, with encouraging results vis-a-vis the optimality of consumption decisions. At the 5% level, we only rejected optimality twice out of 48 times. Empirical-test results show that we can still rely on the canonical CRRA model so prevalent in macroeconomics: out of 24 regressions, we found the rule-of-thumb parameter to be statistically signi cant at the 5% level only twice, and the habit ƴ parameter to be statistically signi cant on four occasions. The main message of this paper is that proper return aggregation is critical to study intertemporal substitution in a representative-agent framework. In this case, we fi nd little evidence of lack of optimality in consumption decisions, and deviations of the CRRA utility model along the lines of rule-of-thumb behavior and habit in preferences represent the exception, not the rule.
Resumo:
This paper tests the optimality of consumption decisions at the aggregate level taking into account popular deviations from the canonical constant-relative-risk-aversion (CRRA) utility function model-rule of thumb and habit. First, based on the critique in Carroll (2001) and Weber (2002) of the linearization and testing strategies using euler equations for consumption, we provide extensive empirical evidence of their inappropriateness - a drawback for standard rule- of-thumb tests. Second, we propose a novel approach to test for consumption optimality in this context: nonlinear estimation coupled with return aggregation, where rule-of-thumb behavior and habit are special cases of an all encompassing model. We estimated 48 euler equations using GMM. At the 5% level, we only rejected optimality twice out of 48 times. Moreover, out of 24 regressions, we found the rule-of-thumb parameter to be statistically significant only twice. Hence, lack of optimality in consumption decisions represent the exception, not the rule. Finally, we found the habit parameter to be statistically significant on four occasions out of 24.
Resumo:
Ever since Adam Smith, economists have argued that share contracts do not provide proper incentives. This paper uses tenancy data from India to assess the existence of missing incentives in this classical example of moral hazard. Sharecroppers are found to be less productive than owners, but as productive as fixed-rent tenants. Also, the productivity gap between owners and both types of tenants is driven by sample-selection issues. An endogenous selection rule matches tenancy contracts with less-skilled farmers and lower-quality lands. Due to complementarity, such a matching affects tenants’ input choices. Controlling for that, the contract form has no effect on the expected output. Next, I explicitly model farmer’s optimal decisions to test the existence of non-contractible inputs being misused. No evidence of missing incentives is found.
Resumo:
We study the optimal “inflation tax” in an environment with heterogeneous agents and non-linear income taxes. We first derive the general conditions needed for the optimality of the Friedman rule in this setup. These general conditions are distinct in nature and more easily interpretable than those obtained in the literature with a representative agent and linear taxation. We then study two standard monetary specifications and derive their implications for the optimality of the Friedman rule. For the shopping-time model the Friedman rule is optimal with essentially no restrictions on preferences or transaction technologies. For the cash-credit model the Friedman rule is optimal if preferences are separable between the consumption goods and leisure, or if leisure shifts consumption towards the credit good. We also study a generalized model which nests both models as special cases.
Resumo:
This paper investigates the optimality of the Friedman rule in a two-sector small open economy. That policy prescription is found to be a necessary condition for Pareto efficiency. If a planner can select all conceivable distorting taxes, then, for some initial values of public debt, money balances and foreign assets, it is possible to decentralize a Pareto efficient allocation. If the planner can select only some of these tax rates, then second-best policies may also satisfy the Friedman rule. However, this last result depends on the set of tax instruments the planner can choose from.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper, we consider a vector optimization problem where all functions involved are defined on Banach spaces. We obtain necessary and sufficient criteria for optimality in the form of Karush-Kuhn-Tucker conditions. We also introduce a nonsmooth dual problem and provide duality theorems.
Resumo:
A vector-valued impulsive control problem is considered whose dynamics, defined by a differential inclusion, are such that the vector fields associated with the singular term do not satisfy the so-called Frobenius condition. A concept of robust solution based on a new reparametrization procedure is adopted in order to derive necessary conditions of optimality. These conditions are obtained by taking a limit of those for an appropriate sequence of auxiliary standard optimal control problems approximating the original one. An example to illustrate the nature of the new optimality conditions is provided. © 2000 Elsevier Science B.V. All rights reserved.
Resumo:
A construction technique of finite point constellations in n-dimensional spaces from ideals in rings of algebraic integers is described. An algorithm is presented to find constellations with minimum average energy from a given lattice. For comparison, a numerical table of lattice constellations and group codes is computed for spaces of dimension two, three, and four. © 2001.