936 resultados para Nonparametric discriminant analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we show the results of a comparison simulation study for three classification techniques: Multinomial Logistic Regression (MLR), No Metric Discriminant Analysis (NDA) and Linear Discriminant Analysis (LDA). The measure used to compare the performance of the three techniques was the Error Classification Rate (ECR). We found that MLR and LDA techniques have similar performance and that they are better than DNA when the population multivariate distribution is Normal or Logit-Normal. For the case of log-normal and Sinh(-1)-normal multivariate distributions we found that MLR had the better performance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

PURPOSE: The main goal of this study was to develop and compare two different techniques for classification of specific types of corneal shapes when Zernike coefficients are used as inputs. A feed-forward artificial Neural Network (NN) and discriminant analysis (DA) techniques were used. METHODS: The inputs both for the NN and DA were the first 15 standard Zernike coefficients for 80 previously classified corneal elevation data files from an Eyesys System 2000 Videokeratograph (VK), installed at the Departamento de Oftalmologia of the Escola Paulista de Medicina, São Paulo. The NN had 5 output neurons which were associated with 5 typical corneal shapes: keratoconus, with-the-rule astigmatism, against-the-rule astigmatism, "regular" or "normal" shape and post-PRK. RESULTS: The NN and DA responses were statistically analyzed in terms of precision ([true positive+true negative]/total number of cases). Mean overall results for all cases for the NN and DA techniques were, respectively, 94% and 84.8%. CONCLUSION: Although we used a relatively small database, results obtained in the present study indicate that Zernike polynomials as descriptors of corneal shape may be a reliable parameter as input data for diagnostic automation of VK maps, using either NN or DA.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Small angle X-ray scattering (SAXS) images of normal breast tissue and benign and malignant breast tumour tissues, fixed in formalin, were measured at the momentum transfer range of 0.063 nm(-1) <= q (=4 pi sin(theta/2)/lambda) <= 2.720 nm(-1). Four intrinsic parameters were extracted from the scattering profiles (1D SAXS image reduced) and, from the combination of these parameters, another three parameters were also created. All parameters, intrinsic and derived, were subject to discriminant analysis, and it was verified that parameters such as the area of diffuse scatter at the momentum transfer range 0.50 <= q <= 0.56 nm(-1), the ratio between areas of fifth-order axial and third-order lateral peaks and third-order axial spacing provide the most significant information for diagnosis (p < 0.001). Thus, in this work it was verified that by combining these three parameters it was possible to classify human breast tissues as normal, benign lesion or malignant lesion with a sensitivity of 83% and a specificity of 100%.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, we initially present an algorithm for automatic composition of melodies using chaotic dynamical systems. Afterward, we characterize chaotic music in a comprehensive way as comprising three perspectives: musical discrimination, dynamical influence on musical features, and musical perception. With respect to the first perspective, the coherence between generated chaotic melodies (continuous as well as discrete chaotic melodies) and a set of classical reference melodies is characterized by statistical descriptors and melodic measures. The significant differences among the three types of melodies are determined by discriminant analysis. Regarding the second perspective, the influence of dynamical features of chaotic attractors, e.g., Lyapunov exponent, Hurst coefficient, and correlation dimension, on melodic features is determined by canonical correlation analysis. The last perspective is related to perception of originality, complexity, and degree of melodiousness (Euler's gradus suavitatis) of chaotic and classical melodies by nonparametric statistical tests. (c) 2010 American Institute of Physics. [doi: 10.1063/1.3487516]

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A growing number of predicting corporate failure models has emerged since 60s. Economic and social consequences of business failure can be dramatic, thus it is not surprise that the issue has been of growing interest in academic research as well as in business context. The main purpose of this study is to compare the predictive ability of five developed models based on three statistical techniques (Discriminant Analysis, Logit and Probit) and two models based on Artificial Intelligence (Neural Networks and Rough Sets). The five models were employed to a dataset of 420 non-bankrupt firms and 125 bankrupt firms belonging to the textile and clothing industry, over the period 2003–09. Results show that all the models performed well, with an overall correct classification level higher than 90%, and a type II error always less than 2%. The type I error increases as we move away from the year prior to failure. Our models contribute to the discussion of corporate financial distress causes. Moreover it can be used to assist decisions of creditors, investors and auditors. Additionally, this research can be of great contribution to devisers of national economic policies that aim to reduce industrial unemployment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A growing number of predicting corporate failure models has emerged since 60s. Economic and social consequences of business failure can be dramatic, thus it is not surprise that the issue has been of growing interest in academic research as well as in business context. The main purpose of this study is to compare the predictive ability of five developed models based on three statistical techniques (Discriminant Analysis, Logit and Probit) and two models based on Artificial Intelligence (Neural Networks and Rough Sets). The five models were employed to a dataset of 420 non-bankrupt firms and 125 bankrupt firms belonging to the textile and clothing industry, over the period 2003–09. Results show that all the models performed well, with an overall correct classification level higher than 90%, and a type II error always less than 2%. The type I error increases as we move away from the year prior to failure. Our models contribute to the discussion of corporate financial distress causes. Moreover it can be used to assist decisions of creditors, investors and auditors. Additionally, this research can be of great contribution to devisers of national economic policies that aim to reduce industrial unemployment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The mineral content (phosphorous (P), potassium (K), sodium (Na), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), zinc (Zn) and copper (Cu)) of eight ready-to-eat baby leaf vegetables was determined. The samples were subjected to microwave-assisted digestion and the minerals were quantified by High-Resolution Continuum Source Atomic Absorption Spectrometry (HR-CS-AAS) with flame and electrothermal atomisation. The methods were optimised and validated producing low LOQs, good repeatability and linearity, and recoveries, ranging from 91% to 110% for the minerals analysed. Phosphorous was determined by a standard colorimetric method. The accuracy of the method was checked by analysing a certified reference material; results were in agreement with the quantified value. The samples had a high content of potassium and calcium, but the principal mineral was iron. The mineral content was stable during storage and baby leaf vegetables could represent a good source of minerals in a balanced diet. A linear discriminant analysis was performed to compare the mineral profile obtained and showed, as expected, that the mineral content was similar between samples from the same family. The Linear Discriminant Analysis was able to discriminate different samples based on their mineral profile.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cuticular hydrocarbons of larvae of individual strains of the Anopheles gambiae sensu stricto were investigated using gas liquid chromatography. Biomedical discriminant analysis involving multivariate statistics suggests that there was clear hydrocarbon difference between the Gambian(G3), the Nigerian (16CSS and, its malathion resistant substrain, REFMA) and the Tanzanian (KWA) strains. The high degree of segregation (95%) in hydrocarbons among the four strains investigated indicates that further analysis is needed to enable understanding of hydrocarbon variation in samples of An. gambiae especially from areas where these populations co-exist.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Antennal sensilla patterns were used to analyze population variation of domestic Rhodnius prolixus from six departments and states representing three biogeographical regions of Colombia and Venezuela. Discriminant analysis of the patterns of mechanoreceptors and of three types of chemoreceptors on the pedicel and flagellar segments showed clear differentiation between R. prolixus populations east and west of the Andean Cordillera. The distribution of thick and thin-walled trichoids on the second flagellar segment also showed correlation with latitude, but this was not seen in the patterns of other sensilla. The results of the sensilla patterns appear to be reflecting biogeographic features or population isolation rather than characters associated with different habitats and lend support to the idea that domestic R. prolixus originated in the eastern region of the Andes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Discriminant analysis was used to identify eggs of Capillaria spp. at specific level found in organic remains from an archaeological site in Patagonia, Argentina, dated of 6,540 ± 110 years before present. In order to distinguish eggshell morphology 149 eggs were measured and grouped into four arbitrary subsets. The analysis used on egg width and length discriminated them into different morphotypes (Wilks' lambda = 0.381, p < 0.05). The correlation analysis suggests that width was the most important variable to discriminate among the Capillaria spp. egg morphotypes (Pearson coefficient = 0.950, p < 0.05). The study of eggshell patterns, the relative frequency in the sample, and the morphometric data allowed us to correlate the four morphotypes with Capillaria species.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A new quantitative approach of the mandibular sexual dimorphism, based on computer-aided image analysis and elliptical Fourier analysis of the mandibular outline in lateral view is presented. This method was applied to a series of 117 dentulous mandibles from 69 male and 48 female individuals native of Rhenish countries. Statistical discriminant analysis of the elliptical Fourier harmonics allowed the demonstration of a significant sexual dimorphism in 97.1% of males and 91.7% of females, i.e. in a higher proportion than in previous studies using classical metrical approaches. This original method opens interesting perspectives for increasing the accuracy of sex identification in current anthropological practice and in forensic procedures.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The class of Schoenberg transformations, embedding Euclidean distances into higher dimensional Euclidean spaces, is presented, and derived from theorems on positive definite and conditionally negative definite matrices. Original results on the arc lengths, angles and curvature of the transformations are proposed, and visualized on artificial data sets by classical multidimensional scaling. A distance-based discriminant algorithm and a robust multidimensional centroid estimate illustrate the theory, closely connected to the Gaussian kernels of Machine Learning.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Artifacts are present in most of the electroencephalography (EEG) recordings, making it difficult to interpret or analyze the data. In this paper a cleaning procedure based on a multivariate extension of empirical mode decomposition is used to improve the quality of the data. This is achieved by applying the cleaning method to raw EEG data. Then, a synchrony measure is applied on the raw and the clean data in order to compare the improvement of the classification rate. Two classifiers are used, linear discriminant analysis and neural networks. For both cases, the classification rate is improved about 20%.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper examines a dataset that derives from an observational tracking, in order to analyze where and how middle-class working families spend time at home. We use an ethnographic approach to study the everyday lives of Italian dual-income middle-class families, with the aim to analyze quantitatively the use of home spaces and the types of activities of family members on weekday afternoons and evenings. The different analyses (multiple correspondence analysis, agglomerative hierarchical cluster, discriminant analysis) show how particular spaces and activities in these spaces are dominated by certain family members. We suggest a combination of qualitative and quantitative methodologies as useful tools to explore in detail the everyday lives of families, and to understand how family members use the domestic spaces. In particular, we consider relevant the use of quantitative analyses to examine ethnographic data, especially in connection with the methodological reflexivity among researchers

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A new analytical method was developed to non-destructively determine pH and degree of polymerisation (DP) of cellulose in fibres in 19th 20th century painting canvases, and to identify the fibre type: cotton, linen, hemp, ramie or jute. The method is based on NIR spectroscopy and multivariate data analysis, while for calibration and validation a reference collection of 199 historical canvas samples was used. The reference collection was analysed destructively using microscopy and chemical analytical methods. Partial least squares regression was used to build quantitative methods to determine pH and DP, and linear discriminant analysis was used to determine the fibre type. To interpret the obtained chemical information, an expert assessment panel developed a categorisation system to discriminate between canvases that may not be fit to withstand excessive mechanical stress, e.g. transportation. The limiting DP for this category was found to be 600. With the new method and categorisation system, canvases of 12 Dalí paintings from the Fundació Gala-Salvador Dalí (Figueres, Spain) were non-destructively analysed for pH, DP and fibre type, and their fitness determined, which informs conservation recommendations. The study demonstrates that collection-wide canvas condition surveys can be performed efficiently and non-destructively, which could significantly improve collection management.