EEG signal analysis via a cleaning procedure based on multivariate empirical mode decomposition


Autoria(s): Gallego Jutglà, Esteve; Rutkowski, E.; Cichocki, Andrej; Solé-Casals, Jordi
Contribuinte(s)

Universitat de Vic. Escola Politècnica Superior

Universitat de Vic. Grup de Recerca en Tecnologies Digitals

International Joint Conference on Computational Intelligence (4rt : 2012 : Barcelona, Catalunya)

Data(s)

2012

Resumo

Artifacts are present in most of the electroencephalography (EEG) recordings, making it difficult to interpret or analyze the data. In this paper a cleaning procedure based on a multivariate extension of empirical mode decomposition is used to improve the quality of the data. This is achieved by applying the cleaning method to raw EEG data. Then, a synchrony measure is applied on the raw and the clean data in order to compare the improvement of the classification rate. Two classifiers are used, linear discriminant analysis and neural networks. For both cases, the classification rate is improved about 20%.

Formato

7 p.

Identificador

http://hdl.handle.net/10854/2486

Idioma(s)

eng

Publicador

SciTePress - Science and Technology Publications

Direitos

(c) SciTePress - Science and Technology Publications

Tots els drets reservats

Palavras-Chave #Alzheimer, Malaltia d'
Tipo

info:eu-repo/semantics/conferenceObject