948 resultados para New Jersey--Remote-sensing maps.
Resumo:
The Remote Sensing Core Curriculum (RSCC) was initiated in 1993 to meet the demands for a college-level set of resources to enhance the quality of education across national and international campuses. The American Society of Photogrammetry and Remote Sensing adopted the RSCC in 1996 to sustain support of this educational initiative for its membership and collegiate community. A series of volumes, containing lectures, exercises, and data, is being created by expert contributors to address the different technical fields of remote sensing. The RSCC program is designed to operate on the Internet taking full advantage of the World Wide Web (WWW) technology for distance learning. The issues of curriculum development related to the educational setting, with demands on faculty, students, and facilities, is considered to understand the new paradigms for WWW-influenced computer-aided learning. The WWW is shown to be especially appropriate for facilitating remote sensing education with requirements for addressing image data sets and multimedia learning tools. The RSCC is located at http://www.umbc.edu/rscc. The Remote Sensing Core Curriculum (RSCC) was initiated in 1993 to meet the demands for a college-level set of resources to enhance the quality of education across national and international campuses. The American Society of Photogrammetry and Remote Sensing adopted the RSCC in 1996 to sustain support of this educational initiative for its membership and collegiate community. A series of volumes, containing lectures, exercises, and data, is being created by expert contributors to address the different technical fields of remote sensing. The RSCC program is designed to operate on the Internet taking full advantage of the World Wide Web (WWW) technology for distance learning. The issues of curriculum development related to the educational setting, with demands on faculty, students, and facilities, is considered to understand the new paradigms for WWW-influenced computer-aided learning. The WWW is shown to be especially appropriate for facilitating remote sensing education with requirements for addressing image data sets and multimedia learning tools. The RSCC is located at http://www.umbc.edu/rscc.
Resumo:
This technical report describes a Light Detection and Ranging (LiDAR) augmented optimal path planning at low level flight methodology for remote sensing and sampling Unmanned Aerial Vehicles (UAV). The UAV is used to perform remote air sampling and data acquisition from a network of sensors on the ground. The data that contains information on the terrain is in the form of a 3D point clouds maps is processed by the algorithms to find an optimal path. The results show that the method and algorithm are able to use the LiDAR data to avoid obstacles when planning a path from a start to a target point. The report compares the performance of the method as the resolution of the LIDAR map is increased and when a Digital Elevation Model (DEM) is included. From a practical point of view, the optimal path plan is loaded and works seemingly with the UAV ground station and also shows the UAV ground station software augmented with more accurate LIDAR data.
Resumo:
Remote sensing provides methods to infer land cover information over large geographical areas at a variety of spatial and temporal resolutions. Land cover is input data for a range of environmental models and information on land cover dynamics is required for monitoring the implications of global change. Such data are also essential in support of environmental management and policymaking. Boreal forests are a key component of the global climate and a major sink of carbon. The northern latitudes are expected to experience a disproportionate and rapid warming, which can have a major impact on vegetation at forest limits. This thesis examines the use of optical remote sensing for estimating aboveground biomass, leaf area index (LAI), tree cover and tree height in the boreal forests and tundra taiga transition zone in Finland. The continuous fields of forest attributes are required, for example, to improve the mapping of forest extent. The thesis focus on studying the feasibility of satellite data at multiple spatial resolutions, assessing the potential of multispectral, -angular and -temporal information, and provides regional evaluation for global land cover data. Preprocessed ASTER, MISR and MODIS products are the principal satellite data. The reference data consist of field measurements, forest inventory data and fine resolution land cover maps. Fine resolution studies demonstrate how statistical relationships between biomass and satellite data are relatively strong in single species and low biomass mountain birch forests in comparison to higher biomass coniferous stands. The combination of forest stand data and fine resolution ASTER images provides a method for biomass estimation using medium resolution MODIS data. The multiangular data improve the accuracy of land cover mapping in the sparsely forested tundra taiga transition zone, particularly in mires. Similarly, multitemporal data improve the accuracy of coarse resolution tree cover estimates in comparison to single date data. Furthermore, the peak of the growing season is not necessarily the optimal time for land cover mapping in the northern boreal regions. The evaluated coarse resolution land cover data sets have considerable shortcomings in northernmost Finland and should be used with caution in similar regions. The quantitative reference data and upscaling methods for integrating multiresolution data are required for calibration of statistical models and evaluation of land cover data sets. The preprocessed image products have potential for wider use as they can considerably reduce the time and effort used for data processing.
Resumo:
Flood extent mapping is a basic tool for flood damage assessment, which can be done by digital classification techniques using satellite imageries, including the data recorded by radar and optical sensors. However, converting the data into the information we need is not a straightforward task. One of the great challenges involved in the data interpretation is to separate the permanent water bodies and flooding regions, including both the fully inundated areas and the wet areas where trees and houses are partly covered with water. This paper adopts the decision fusion technique to combine the mapping results from radar data and the NDVI data derived from optical data. An improved capacity in terms of identifying the permanent or semi-permanent water bodies from flood inundated areas has been achieved. Computer software tools Multispec and Matlab were used.
Resumo:
Road transport and infrastructure has a fundamental meaning for the developing world. Poor quality and inadequate coverage of roads, lack of maintenance operations and outdated road maps continue to hinder economic and social development in the developing countries. This thesis focuses on studying the present state of road infrastructure and its mapping in the Taita Hills, south-east Kenya. The study is included as a part of the TAITA-project by the Department of Geography, University of Helsinki. The road infrastructure of the study area is studied by remote sensing and GIS based methodology. As the principal dataset, true colour airborne digital camera data from 2004, was used to generate an aerial image mosaic of the study area. Auxiliary data includes SPOT satellite imagery from 2003, field spectrometry data of road surfaces and relevant literature. Road infrastructure characteristics are interpreted from three test sites using pixel-based supervised classification, object-oriented supervised classifications and visual interpretation. Road infrastructure of the test sites is interpreted visually from a SPOT image. Road centrelines are then extracted from the object-oriented classification results with an automatic vectorisation process. The road infrastructure of the entire image mosaic is mapped by applying the most appropriate assessed data and techniques. The spectral characteristics and reflectance of various road surfaces are considered with the acquired field spectra and relevant literature. The results are compared with the experimented road mapping methods. This study concludes that classification and extraction of roads remains a difficult task, and that the accuracy of the results is inadequate regardless of the high spatial resolution of the image mosaic used in this thesis. Visual interpretation, out of all the experimented methods in this thesis is the most straightforward, accurate and valid technique for road mapping. Certain road surfaces have similar spectral characteristics and reflectance values with other land cover and land use. This has a great influence for digital analysis techniques in particular. Road mapping is made even more complicated by rich vegetation and tree canopy, clouds, shadows, low contrast between roads and surroundings and the width of narrow roads in relation to the spatial resolution of the imagery used. The results of this thesis may be applied to road infrastructure mapping in developing countries on a more general context, although with certain limits. In particular, unclassified rural roads require updated road mapping schemas to intensify road transport possibilities and to assist in the development of the developing world.
Resumo:
An attempt was made to conduct spatial assessment of the pattern and extent of damage to coastal aquaculture ponds along the east coast of Aceh province in Sumatra, Indonesia, resulting from the tsunami event of 26 December 2004. High-resolution satellite imagery, i.e., SPOT-5 multispectral scenes covering the 700 km stretch of the coast, acquired before and after the tsunami, were digitally enhanced and visually interpreted to delineate pockets of aquaculture ponds that were discerned to be damaged and relatively intact. Field checks were conducted at 87 sites in the four eastern coastal districts. The results indicate that SPOT-5 multispectral imagery was minimally sufficient to detect areas of damaged and relatively intact aquaculture ponds, but the 10-m spatial resolution poses limitations to evaluating the extent of pond damage. Nevertheless, the 60 km swath of the imagery makes it reasonably affordable for large-area assessment to identify pockets of severe damage for targeting more detailed assessments. The image maps produced from a mosaic of the SPOT-5 scenes can also serve as base maps for spatial planning in the challenging task of reconstruction and rehabilitation of the disrupted livelihoods of the coastal communities.
Resumo:
An attempt was made to conduct spatial assessment of the pattern and extent of damage to coastal aquaculture ponds along the east coast of Aceh province in Sumatra, Indonesia, resulting from the tsunami event of 26 December 2004. High-resolution satellite imagery, i.e., SPOT-5 multispectral scenes covering the 700 km stretch of the coast, acquired before and after the tsunami, were digitally enhanced and visually interpreted to delineate pockets of aquaculture ponds that were discerned to be damaged and relatively intact. Field checks were conducted at 87 sites in the four eastern coastal districts. The results indicate that SPOT-5 multispectral imagery was minimally sufficient to detect areas of damaged and relatively intact aquaculture ponds, but the 10-m spatial resolution poses limitations to evaluating the extent of pond damage. Nevertheless, the 60 km swath of the imagery makes it reasonably affordable for large-area assessment to identify pockets of severe damage for targeting more detailed assessments. The image maps produced from a mosaic of the SPOT-5 scenes can also serve as base maps for spatial planning in the challenging task of reconstruction and rehabilitation of the disrupted livelihoods of the coastal communities.
Resumo:
Marine protected areas (MPAs) represent a form of spatial management, and geospatial information on living marine resources and associated habitat is extremely important to support best management practices in a spatially discrete MPA. Benthic habitat maps provide georeferenced information on the geomorphic structure and biological cover types in the marine environment. This information supports an enhanced understanding of ecosystem function and species habitat utilization patterns. Benthic habitat maps are most useful for marine management and spatial planning purposes when they are created at a scale that is relevant to management actions. We sought to improve the resolution of existing benthic habitat maps created during a regional mapping effort in Hawai`i. Our results complemented these existing regional maps and provided more detailed, finer-scale habitat maps for a network of MPAs in West Hawai`i. The map products created during this study allow local planners and managers to extract information at a spatial scale relevant to the discrete management units, and appropriate for local marine management efforts on the Kona Coast. The resultant benthic habitat maps were integrated in a geographic information system (GIS) that also included aerial imagery, underwater video, MPA regulations, summarized ecological data and other relevant and spatially explicit information. The integration of the benthic habitat maps with additional “value added” geospatial information into a dynamic GIS provide a decision support tool with pertinent marine resource information available in one central location and support the application of a spatial approach to the management of marine resources. Further, this work can serve as a case study to demonstrate the integration of remote sensing products and GIS tools at a fine spatial scale relevant to local-level marine spatial planning and management efforts.
Semantic Discriminant mapping for classification and browsing of remote sensing textures and objects
Resumo:
We present a new approach based on Discriminant Analysis to map a high dimensional image feature space onto a subspace which has the following advantages: 1. each dimension corresponds to a semantic likelihood, 2. an efficient and simple multiclass classifier is proposed and 3. it is low dimensional. This mapping is learnt from a given set of labeled images with a class groundtruth. In the new space a classifier is naturally derived which performs as well as a linear SVM. We will show that projecting images in this new space provides a database browsing tool which is meaningful to the user. Results are presented on a remote sensing database with eight classes, made available online. The output semantic space is a low dimensional feature space which opens perspectives for other recognition tasks. © 2005 IEEE.
Resumo:
Maps of surface chlorophyllous pigment (Chl a + Pheo a) are currently produced from ocean color sensors. Transforming such maps into maps of primary production can be reliably done only by using light-production models in conjuction with additional information about the column-integrated pigment content and its vertical distribution. As a preliminary effort in this direction. $\ticksim 4,000$ vertical profiles pigment (Chl a + Pheo a) determined only in oceanic Case 1 waters have been statistically analyzed. They were scaled according to dimensionless depths (actual depth divided by the depth of the euphotic layer, $Z_e$) and expressed as dimensionless concentrations (actual concentration divided by the mean concentration within the euphotic layer). The depth $Z_e$ generally unknown, was computed with a previously develop bio-optical model. Highly sifnificant relationships were found allowing $\langle C \rangle_tot$, the pigment content of the euphotic layer, to be inferred from the surface concentration, $\bar C_pd$, observed within the layer of one penetration depth. According to their $\bar C_pd$ values (ranging from $0.01 to > 10 mg m^-3$), we categorized the profiles into seven trophic situations and computed a mean vertical profile for each. Between a quasi-uniform profile in eutrophic waters and a profile with a strong deep maximum in oligotrophic waters, the shape evolves rather regularly. The wellmixed cold waters, essentially in the Antarctic zone, have been separately examined. On average, their profiles are featureless, without deep maxima, whatever their trophic state. Averaged values their profiles are featureless, without deep maxima, whatever their trophic state. Averaged values their profiles are featureless, without deep maxima, whatever their trophic state. Averaged values of $ρ$, the ratio of Chl a tp (Chl a + Pheo a), have also been obtained for each trophic category. The energy stored by photosynthesizing algae, once normalized with respect to the integrated chlorophyll biomass $\langle C \rangle _tot $ is proportional to the available photosythetic energy at the surface via a parameter $ψ∗$ which is the cross-section for photosynthesis per unit of areal chlorophyll. By tanking advantage of the relative stability of $ψ∗.$ we can compute primary production from ocean color data acquired from space. For such a computation, inputs are the irradiance field at the ocean surface, the "surface" pigment from which $\langle C \rangle _tot$ can be derived, the mean $ρ value pertinent to the trophic situation as depicted by the $\bar C_pd or $\langle C \rangle _tot$ values, and the cross-section $ψ∗$. Instead of a contant $ψ∗.$ value, the mean profiles can be used; they allow the climatological field of the $ψ∗.$ parameter to be adjusted through the parallel use of a spectral light-production model.
Resumo:
A new wave retrieval method for the Along-Track Interferometric Synthetic Aperture Radar (AT-InSAR) phase image is presented. The new algorithm, named parametric retrieval algorithm (PRA), uses the full nonlinear mapping relations. It differs from previous retrieval algorithms in that it does not require a priori information about the sea state or the wind vector from scatterometer data. Instead, it combines the observed AT-InSAR phase spectrum and assumed wind vector to estimate the wind sea spectrum. The method has been validated using several C-band and X-band HH-polarized AT-InSAR observations collocated with spectral buoy measurements. In this paper, X-band and C-band HH-polarized AT-InSAR phase images of ocean waves are first used to study AT-InSAR wave imaging fidelity. The resulting phase spectra are quantitatively compared with forward-mapped in situ directional wave spectra collocated with the AT-InSAR observations. Subsequently, we combine the parametric retrieval algorithm (PRA) with X-band and C-band HH-polarized AT-InSAR phase images to retrieve ocean wave spectra. The results show that the ocean wavelengths, wave directions, and significant wave heights estimated from the retrieved ocean wave spectra are in agreement with the buoy measurements.
Resumo:
A new method to measure ocean wave slope spectra using fully polarimetric synthetic aperture radar (POLSAR) data was developed without the need for a complex hydrodynamic modulation transform function. There is no explicit use of a hydrodynamic modulation transfer function. This function is not clearly known and is based on hydrodynamic assumptions. The method is different from those developed by Schuler and colleagues or Pottier but complements their methods. The results estimated from NASA Jet Propulsion Laboratory (JPL) Airborne Synthetic Aperture Radar (AIRSAR) C-band polarimetric SAR data show that the ocean wavelength, wave direction, and significant wave height are in agreement with buoy measurements. The proposed method can be employed by future satellite missions such as RADARSAT-2.
Resumo:
Hurricanes are destructive storms with strong winds, intense storm surges, and heavy rainfall. The resulting impact from a hurricane can include structural damage to buildings and infrastructure, flooding, and ultimately loss of human life. This paper seeks to identify the impact of Hurricane Ivan on the aected population of Grenada, one of the Caribbean islands. Hurricane Ivan made landfall on 7th September 2004 and resulted in 80% of the population being adversely aected. The methods that were used to model these impacts involved performing hazard and risk assessments using GIS and remote sensing techniques. Spatial analyses were used to create a hazard and a risk map. Hazards were identied initially as those caused by storm surges, severe winds speeds, and flooding events related to Hurricane Ivan. These estimated hazards were then used to create a risk map. An innovative approach was adopted, including the use of hillshading to assess the damage caused by high wind speeds. This paper explains in detail the methodology used and the results produced.
Resumo:
The heterogeneity in phytoplankton production in the North Atlantic after the spring bloom is poorly understood. We analysed merged microwave and infrared satellite sea surface temperature (SST) data and ocean colour phytoplankton size class biomass, primary production (PP) and new production (ExP) derived from SeaWiFS data, to assess the spatial and temporal frequency of surface thermal fronts and areas of enhanced PP and ExP. Strong and persistent surface thermal fronts occurred at the Reykjanes Ridge (RR) and sub-polar front (SPF), which sustain high PP and ExP and, outside of the spring bloom, account for 9% and 15% of the total production in the North Atlantic. When normalised by area, PP at the SPF is four times higher than the RR. Analysis of 13 years of satellite ocean colour data from SeaWiFS, and compared with MODIS-Aqua and MERIS, showed that there was no increase in Chla from 1998 to 2002, which then decreased in all areas from 2002 to 2007 and was most pronounced in the RR. These time series also illustrated that the SPF exhibited the highest PP and the lowest variation in Chla over the ocean colour record. This implies that the SPF provides a high and consistent supply of carbon to the benthos irrespective of fluctuations in the North Atlantic Oscillation.
Resumo:
Estimating primary production at large spatial scales is key to our understanding of the global carbon cycle. Algorithms to estimate primary production are well established and have been used in many studies with success. One of the key parameters in these algorithms is the chlorophyll-normalised production rate under light saturation (referred to as the light saturation parameter or the assimilation number). It is known to depend on temperature, light history and nutrient conditions, but assigning a magnitude to it at particular space-time points is difficult. In this paper, we explore two models to estimate the assimilation number at the global scale from remotely-sensed data that combine methods to estimate the carbon-to-chlorophyll ratio and the maximum growth rate of phytoplankton. The inputs to the algorithms are the surface concentration of chlorophyll, seasurface temperature, photosynthetically-active radiation af the surface of the sea, sea surface nutrient concentration and mixed-layer depth. A large database of in situ estimates of the assimilation number is used to develop the models and provide elements of validation. The comparisons with in situ observations are promising and global maps of assimilation number are produced.