804 resultados para Neumann problem
Resumo:
The following properties of the core of a one well-known: (i) the core is non-empty; (ii) the core is a lattice; and (iii) the set of unmatched agents is identical for any two matchings belonging to the core. The literature on two-sided matching focuses almost exclusively on the core and studies extensively its properties. Our main result is the following characterization of (von Neumann-Morgenstern) stable sets in one-to-one matching problem only if it is a maximal set satisfying the following properties : (a) the core is a subset of the set; (b) the set is a lattice; (c) the set of unmatched agents is identical for any two matchings belonging to the set. Furthermore, a set is a stable set if it is the unique maximal set satisfying properties (a), (b) and (c). We also show that our main result does not extend from one-to-one matching problems to many-to-one matching problems.
Resumo:
Les façons d'aborder l'étude du spectre du laplacien sont multiples. Ce mémoire se concentre sur les partitions spectrales optimales de domaines planaires. Plus précisément, lorsque nous imposons des conditions aux limites de Dirichlet, nous cherchons à trouver la ou les partitions qui réalisent l'infimum (sur l'ensemble des partitions à un certain nombre de composantes) du maximum de la première valeur propre du laplacien sur tous ses sous-domaines. Dans les dernières années, cette question a été activement étudiée par B. Helffer, T. Hoffmann-Ostenhof, S. Terracini et leurs collaborateurs, qui ont obtenu plusieurs résultats analytiques et numériques importants. Dans ce mémoire, nous proposons un problème analogue, mais pour des conditions aux limites de Neumann cette fois. Dans ce contexte, nous nous intéressons aux partitions spectrales maximales plutôt que minimales. Nous cherchons alors à vérifier le maximum sur toutes les $k$-partitions possibles du minimum de la première valeur propre non nulle de chacune des composantes. Cette question s'avère plus difficile que sa semblable dans la mesure où plusieurs propriétés des valeurs propres de Dirichlet, telles que la monotonicité par rapport au domaine, ne tiennent plus. Néanmoins, quelques résultats sont obtenus pour des 2-partitions de domaines symétriques et des partitions spécifiques sont trouvées analytiquement pour des domaines rectangulaires. En outre, des propriétés générales des partitions spectrales optimales et des problèmes ouverts sont abordés.
Resumo:
This paper is concerned with solving numerically the Dirichlet boundary value problem for Laplace’s equation in a nonlocally perturbed half-plane. This problem arises in the simulation of classical unsteady water wave problems. The starting point for the numerical scheme is the boundary integral equation reformulation of this problem as an integral equation of the second kind on the real line in Preston et al. (2008, J. Int. Equ. Appl., 20, 121–152). We present a Nystr¨om method for numerical solution of this integral equation and show stability and convergence, and we present and analyse a numerical scheme for computing the Dirichlet-to-Neumann map, i.e., for deducing the instantaneous fluid surface velocity from the velocity potential on the surface, a key computational step in unsteady water wave simulations. In particular, we show that our numerical schemes are superalgebraically convergent if the fluid surface is infinitely smooth. The theoretical results are illustrated by numerical experiments.
Resumo:
We analyse the Dirichlet problem for the elliptic sine Gordon equation in the upper half plane. We express the solution $q(x,y)$ in terms of a Riemann-Hilbert problem whose jump matrix is uniquely defined by a certain function $b(\la)$, $\la\in\R$, explicitly expressed in terms of the given Dirichlet data $g_0(x)=q(x,0)$ and the unknown Neumann boundary value $g_1(x)=q_y(x,0)$, where $g_0(x)$ and $g_1(x)$ are related via the global relation $\{b(\la)=0$, $\la\geq 0\}$. Furthermore, we show that the latter relation can be used to characterise the Dirichlet to Neumann map, i.e. to express $g_1(x)$ in terms of $g_0(x)$. It appears that this provides the first case that such a map is explicitly characterised for a nonlinear integrable {\em elliptic} PDE, as opposed to an {\em evolution} PDE.
Continuity of the dynamics in a localized large diffusion problem with nonlinear boundary conditions
Resumo:
This paper is concerned with singular perturbations in parabolic problems subjected to nonlinear Neumann boundary conditions. We consider the case for which the diffusion coefficient blows up in a subregion Omega(0) which is interior to the physical domain Omega subset of R(n). We prove, under natural assumptions, that the associated attractors behave continuously as the diffusion coefficient blows up locally uniformly in Omega(0) and converges uniformly to a continuous and positive function in Omega(1) = (Omega) over bar\Omega(0). (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
In a previous paper, we connected the phenomenological noncommutative inflation of Alexander, Brandenberger and Magueijo [ Phys. Rev. D 67 081301 (2003)] and Koh and Brandenberger [ J. Cosmol. Astropart Phys. 2007 21 ()] with the formal representation theory of groups and algebras and analyzed minimal conditions that the deformed dispersion relation should satisfy in order to lead to a successful inflation. In that paper, we showed that elementary tools of algebra allow a group-like procedure in which even Hopf algebras (roughly the symmetries of noncommutative spaces) could lead to the equation of state of inflationary radiation. Nevertheless, in this paper, we show that there exists a conceptual problem with the kind of representation that leads to the fundamental equations of the model. The problem comes from an incompatibility between one of the minimal conditions for successful inflation (the momentum of individual photons being bounded from above) and the Fock-space structure of the representation which leads to the fundamental inflationary equations of state. We show that the Fock structure, although mathematically allowed, would lead to problems with the overall consistency of physics, like leading to a problematic scattering theory, for example. We suggest replacing the Fock space by one of two possible structures that we propose. One of them relates to the general theory of Hopf algebras (here explained at an elementary level) while the other is based on a representation theorem of von Neumann algebras (a generalization of the Clebsch-Gordan coefficients), a proposal already suggested by us to take into account interactions in the inflationary equation of state.
Resumo:
Gerhardt Neumann
Resumo:
We propose and investigate a method for the stable determination of a harmonic function from knowledge of its value and its normal derivative on a part of the boundary of the (bounded) solution domain (Cauchy problem). We reformulate the Cauchy problem as an operator equation on the boundary using the Dirichlet-to-Neumann map. To discretize the obtained operator, we modify and employ a method denoted as Classic II given in [J. Helsing, Faster convergence and higher accuracy for the Dirichlet–Neumann map, J. Comput. Phys. 228 (2009), pp. 2578–2576, Section 3], which is based on Fredholm integral equations and Nyström discretization schemes. Then, for stability reasons, to solve the discretized integral equation we use the method of smoothing projection introduced in [J. Helsing and B.T. Johansson, Fast reconstruction of harmonic functions from Cauchy data using integral equation techniques, Inverse Probl. Sci. Eng. 18 (2010), pp. 381–399, Section 7], which makes it possible to solve the discretized operator equation in a stable way with minor computational cost and high accuracy. With this approach, for sufficiently smooth Cauchy data, the normal derivative can also be accurately computed on the part of the boundary where no data is initially given.
Resumo:
We propose two algorithms involving the relaxation of either the given Dirichlet data or the prescribed Neumann data on the over-specified boundary, in the case of the alternating iterative algorithm of ` 12 ` 12 `$12 `&12 `#12 `^12 `_12 `%12 `~12 *Kozlov91 applied to Cauchy problems for the modified Helmholtz equation. A convergence proof of these relaxation methods is given, along with a stopping criterion. The numerical results obtained using these procedures, in conjunction with the boundary element method (BEM), show the numerical stability, convergence, consistency and computational efficiency of the proposed methods.
Resumo:
A Cauchy problem for general elliptic second-order linear partial differential equations in which the Dirichlet data in H½(?1 ? ?3) is assumed available on a larger part of the boundary ? of the bounded domain O than the boundary portion ?1 on which the Neumann data is prescribed, is investigated using a conjugate gradient method. We obtain an approximation to the solution of the Cauchy problem by minimizing a certain discrete functional and interpolating using the finite diference or boundary element method. The minimization involves solving equations obtained by discretising mixed boundary value problems for the same operator and its adjoint. It is proved that the solution of the discretised optimization problem converges to the continuous one, as the mesh size tends to zero. Numerical results are presented and discussed.
Resumo:
We propose two algorithms involving the relaxation of either the given Dirichlet data (boundary displacements) or the prescribed Neumann data (boundary tractions) on the over-specified boundary in the case of the alternating iterative algorithm of Kozlov et al. [16] applied to Cauchy problems in linear elasticity. A convergence proof of these relaxation methods is given, along with a stopping criterion. The numerical results obtained using these procedures, in conjunction with the boundary element method (BEM), show the numerical stability, convergence, consistency and computational efficiency of the proposed method.
Resumo:
We consider a Cauchy problem for the Laplace equation in a bounded region containing a cut, where the region is formed by removing a sufficiently smooth arc (the cut) from a bounded simply connected domain D. The aim is to reconstruct the solution on the cut from the values of the solution and its normal derivative on the boundary of the domain D. We propose an alternating iterative method which involves solving direct mixed problems for the Laplace operator in the same region. These mixed problems have either a Dirichlet or a Neumann boundary condition imposed on the cut and are solved by a potential approach. Each of these mixed problems is reduced to a system of integral equations of the first kind with logarithmic and hypersingular kernels and at most a square root singularity in the densities at the endpoints of the cut. The full discretization of the direct problems is realized by a trigonometric quadrature method which has super-algebraic convergence. The numerical examples presented illustrate the feasibility of the proposed method.
Resumo:
Cikkünk arról a paradox jelenségről szól, hogy a fogyasztást explicit módon megjelenítő Neumann-modell egyensúlyi megoldásaiban a munkabért meghatározó létszükségleti termékek ára esetenként nulla lehet, és emiatt a reálbér egyensúlyi értéke is nulla lesz. Ez a jelenség mindig bekövetkezik az olyan dekomponálható gazdaságok esetén, amelyekben eltérő növekedési és profitrátájú, alternatív egyensúlyi megoldások léteznek. A jelenség sokkal áttekinthetőbb formában tárgyalható a modell Leontief-eljárásra épülő egyszerűbb változatában is, amit ki is használunk. Megmutatjuk, hogy a legnagyobbnál alacsonyabb szintű növekedési tényezőjű megoldások közgazdasági szempontból értelmetlenek, és így érdektelenek. Ezzel voltaképpen egyrészt azt mutatjuk meg, hogy Neumann kiváló intuíciója jól működött, amikor ragaszkodott modellje egyértelmű megoldásához, másrészt pedig azt is, hogy ehhez nincs szükség a gazdaság dekomponálhatóságának feltételezésére. A vizsgált téma szorosan kapcsolódik az általános profitráta meghatározásának - Sraffa által modern formába öntött - Ricardo-féle elemzéséhez, illetve a neoklasszikus növekedéselmélet nevezetes bér-profit, illetve felhalmozás-fogyasztás átváltási határgörbéihez, ami jelzi a téma elméleti és elmélettörténeti érdekességét is. / === / In the Marx-Neumann version of the Neumann model introduced by Morishima, the use of commodities is split between production and consumption, and wages are determined as the cost of necessary consumption. In such a version it may occur that the equilibrium prices of all goods necessary for consumption are zero, so that the equilibrium wage rate becomes zero too. In fact such a paradoxical case will always arise when the economy is decomposable and the equilibrium not unique in terms of growth and interest rate. It can be shown that a zero equilibrium wage rate will appear in all equilibrium solutions where growth and interest rate are less than maximal. This is another proof of Neumann's genius and intuition, for he arrived at the uniqueness of equilibrium via an assumption that implied that the economy was indecomposable, a condition relaxed later by Kemeny, Morgenstern and Thompson. This situation occurs also in similar models based on Leontief technology and such versions of the Marx-Neumann model make the roots of the problem more apparent. Analysis of them also yields an interesting corollary to Ricardo's corn rate of profit: the real cause of the awkwardness is bad specification of the model: luxury commodities are introduced without there being a final demand for them, and production of them becomes a waste of resources. Bad model specification shows up as a consumption coefficient incompatible with the given technology in the more general model with joint production and technological choice. For the paradoxical situation implies the level of consumption could be raised and/or the intensity of labour diminished without lowering the equilibrium rate of the growth and interest. This entails wasteful use of resources and indicates again that the equilibrium conditions are improperly specified. It is shown that the conditions for equilibrium can and should be redefined for the Marx-Neumann model without assuming an indecomposable economy, in a way that ensures the existence of an equilibrium unique in terms of the growth and interest rate coupled with a positive value for the wage rate, so confirming Neumann's intuition. The proposed solution relates closely to findings of Bromek in a paper correcting Morishima's generalization of wage/profit and consumption/investment frontiers.
Biased Random-key Genetic Algorithms For The Winner Determination Problem In Combinatorial Auctions.
Resumo:
Abstract In this paper, we address the problem of picking a subset of bids in a general combinatorial auction so as to maximize the overall profit using the first-price model. This winner determination problem assumes that a single bidding round is held to determine both the winners and prices to be paid. We introduce six variants of biased random-key genetic algorithms for this problem. Three of them use a novel initialization technique that makes use of solutions of intermediate linear programming relaxations of an exact mixed integer-linear programming model as initial chromosomes of the population. An experimental evaluation compares the effectiveness of the proposed algorithms with the standard mixed linear integer programming formulation, a specialized exact algorithm, and the best-performing heuristics proposed for this problem. The proposed algorithms are competitive and offer strong results, mainly for large-scale auctions.
Resumo:
Ecological science contributes to solving a broad range of environmental problems. However, lack of ecological literacy in practice often limits application of this knowledge. In this paper, we highlight a critical but often overlooked demand on ecological literacy: to enable professionals of various careers to apply scientific knowledge when faced with environmental problems. Current university courses on ecology often fail to persuade students that ecological science provides important tools for environmental problem solving. We propose problem-based learning to improve the understanding of ecological science and its usefulness for real-world environmental issues that professionals in careers as diverse as engineering, public health, architecture, social sciences, or management will address. Courses should set clear learning objectives for cognitive skills they expect students to acquire. Thus, professionals in different fields will be enabled to improve environmental decision-making processes and to participate effectively in multidisciplinary work groups charged with tackling environmental issues.