992 resultados para Neumann Problem
Resumo:
A Cauchy problem for general elliptic second-order linear partial differential equations in which the Dirichlet data in H½(?1 ? ?3) is assumed available on a larger part of the boundary ? of the bounded domain O than the boundary portion ?1 on which the Neumann data is prescribed, is investigated using a conjugate gradient method. We obtain an approximation to the solution of the Cauchy problem by minimizing a certain discrete functional and interpolating using the finite diference or boundary element method. The minimization involves solving equations obtained by discretising mixed boundary value problems for the same operator and its adjoint. It is proved that the solution of the discretised optimization problem converges to the continuous one, as the mesh size tends to zero. Numerical results are presented and discussed.
Resumo:
We propose two algorithms involving the relaxation of either the given Dirichlet data (boundary displacements) or the prescribed Neumann data (boundary tractions) on the over-specified boundary in the case of the alternating iterative algorithm of Kozlov et al. [16] applied to Cauchy problems in linear elasticity. A convergence proof of these relaxation methods is given, along with a stopping criterion. The numerical results obtained using these procedures, in conjunction with the boundary element method (BEM), show the numerical stability, convergence, consistency and computational efficiency of the proposed method.
Resumo:
We consider a Cauchy problem for the Laplace equation in a bounded region containing a cut, where the region is formed by removing a sufficiently smooth arc (the cut) from a bounded simply connected domain D. The aim is to reconstruct the solution on the cut from the values of the solution and its normal derivative on the boundary of the domain D. We propose an alternating iterative method which involves solving direct mixed problems for the Laplace operator in the same region. These mixed problems have either a Dirichlet or a Neumann boundary condition imposed on the cut and are solved by a potential approach. Each of these mixed problems is reduced to a system of integral equations of the first kind with logarithmic and hypersingular kernels and at most a square root singularity in the densities at the endpoints of the cut. The full discretization of the direct problems is realized by a trigonometric quadrature method which has super-algebraic convergence. The numerical examples presented illustrate the feasibility of the proposed method.
Resumo:
Cikkünk arról a paradox jelenségről szól, hogy a fogyasztást explicit módon megjelenítő Neumann-modell egyensúlyi megoldásaiban a munkabért meghatározó létszükségleti termékek ára esetenként nulla lehet, és emiatt a reálbér egyensúlyi értéke is nulla lesz. Ez a jelenség mindig bekövetkezik az olyan dekomponálható gazdaságok esetén, amelyekben eltérő növekedési és profitrátájú, alternatív egyensúlyi megoldások léteznek. A jelenség sokkal áttekinthetőbb formában tárgyalható a modell Leontief-eljárásra épülő egyszerűbb változatában is, amit ki is használunk. Megmutatjuk, hogy a legnagyobbnál alacsonyabb szintű növekedési tényezőjű megoldások közgazdasági szempontból értelmetlenek, és így érdektelenek. Ezzel voltaképpen egyrészt azt mutatjuk meg, hogy Neumann kiváló intuíciója jól működött, amikor ragaszkodott modellje egyértelmű megoldásához, másrészt pedig azt is, hogy ehhez nincs szükség a gazdaság dekomponálhatóságának feltételezésére. A vizsgált téma szorosan kapcsolódik az általános profitráta meghatározásának - Sraffa által modern formába öntött - Ricardo-féle elemzéséhez, illetve a neoklasszikus növekedéselmélet nevezetes bér-profit, illetve felhalmozás-fogyasztás átváltási határgörbéihez, ami jelzi a téma elméleti és elmélettörténeti érdekességét is. / === / In the Marx-Neumann version of the Neumann model introduced by Morishima, the use of commodities is split between production and consumption, and wages are determined as the cost of necessary consumption. In such a version it may occur that the equilibrium prices of all goods necessary for consumption are zero, so that the equilibrium wage rate becomes zero too. In fact such a paradoxical case will always arise when the economy is decomposable and the equilibrium not unique in terms of growth and interest rate. It can be shown that a zero equilibrium wage rate will appear in all equilibrium solutions where growth and interest rate are less than maximal. This is another proof of Neumann's genius and intuition, for he arrived at the uniqueness of equilibrium via an assumption that implied that the economy was indecomposable, a condition relaxed later by Kemeny, Morgenstern and Thompson. This situation occurs also in similar models based on Leontief technology and such versions of the Marx-Neumann model make the roots of the problem more apparent. Analysis of them also yields an interesting corollary to Ricardo's corn rate of profit: the real cause of the awkwardness is bad specification of the model: luxury commodities are introduced without there being a final demand for them, and production of them becomes a waste of resources. Bad model specification shows up as a consumption coefficient incompatible with the given technology in the more general model with joint production and technological choice. For the paradoxical situation implies the level of consumption could be raised and/or the intensity of labour diminished without lowering the equilibrium rate of the growth and interest. This entails wasteful use of resources and indicates again that the equilibrium conditions are improperly specified. It is shown that the conditions for equilibrium can and should be redefined for the Marx-Neumann model without assuming an indecomposable economy, in a way that ensures the existence of an equilibrium unique in terms of the growth and interest rate coupled with a positive value for the wage rate, so confirming Neumann's intuition. The proposed solution relates closely to findings of Bromek in a paper correcting Morishima's generalization of wage/profit and consumption/investment frontiers.
Resumo:
A new solution to the millionaire problem is designed on the base of two new techniques: zero test and batch equation. Zero test is a technique used to test whether one or more ciphertext contains a zero without revealing other information. Batch equation is a technique used to test equality of multiple integers. Combination of these two techniques produces the only known solution to the millionaire problem that is correct, private, publicly verifiable and efficient at the same time.