868 resultados para Negative Binomial Regression Model (NBRM)
Resumo:
Background: Infection with multiple types of human papillomavirus (HPV) is one of the main risk factors associated with the development of cervical lesions. In this study, cervical samples collected from 1, 810 women with diverse sociocultural backgrounds, who attended to their cervical screening program in different geographical regions of Colombia, were examined for the presence of cervical lesions and HPV by Papanicolau testing and DNA PCR detection, respectively. Principal Findings: The negative binomial distribution model used in this study showed differences between the observed and expected values within some risk factor categories analyzed. Particularly in the case of single infection and coinfection with more than 4 HPV types, observed frequencies were smaller than expected, while the number of women infected with 2 to 4 viral types were higher than expected. Data analysis according to a negative binomial regression showed an increase in the risk of acquiring more HPV types in women who were of indigenous ethnicity (+37.8%), while this risk decreased in women who had given birth more than 4 times (-31.1%), or were of mestizo (-24.6%) or black (-40.9%) ethnicity. Conclusions: According to a theoretical probability distribution, the observed number of women having either a single infection or more than 4 viral types was smaller than expected, while for those infected with 2-4 HPV types it was larger than expected. Taking into account that this study showed a higher HPV coinfection rate in the indigenous ethnicity, the role of underlying factors should be assessed in detail in future studies.
Resumo:
The paper describes the development and application of a multiple linear regression model to identify how the key elements of waste and recycling infrastructure, namely container capacity and frequency of collection affect the yield from municipal kerbside recycling programmes. The overall aim of the research was to gain an understanding of the factors affecting the yield from municipal kerbside recycling programmes in Scotland. The study isolates the principal kerbside collection service offered by 32 councils across Scotland, eliminating those recycling programmes associated with flatted properties or multi occupancies. The results of a regression analysis model has identified three principal factors which explain 80% of the variability in the average yield of the principal dry recyclate services: weekly residual waste capacity, number of materials collected and the weekly recycling capacity. The use of the model has been evaluated and recommendations made on ongoing methodological development and the use of the results in informing the design of kerbside recycling programmes. The authors hope that the research can provide insights for the ongoing development of methods to optimise the design and operation of kerbside recycling programmes.
Resumo:
Histone deacetylases (HDACs) are enzymes involved in transcriptional repression. We aimed to examine the significance of HDAC1 and HDAC2 gene expression in the prediction of recurrence and survival in 156 patients with hepatocellular carcinoma (HCC) among a South East Asian population who underwent curative surgical resection in Singapore. We found that HDAC1 and HDAC2 were upregulated in the majority of HCC tissues. The presence of HDAC1 in tumor tissues was correlated with poor tumor differentiation. Notably, HDAC1 expression in adjacent non-tumor hepatic tissues was correlated with the presence of satellite nodules and multiple lesions, suggesting that HDAC1 upregulation within the field of HCC may contribute to tumor spread. Using competing risk regression analysis, we found that increased cancer-specific mortality was significantly associated with HDAC2 expression. Mortality was also increased with high HDAC1 expression. In the liver cancer cell lines, HEP3B, HEPG2, PLC5, and a colorectal cancer cell line, HCT116, the combined knockdown of HDAC1 and HDAC2 increased cell death and reduced cell proliferation as well as colony formation. In contrast, knockdown of either HDAC1 or HDAC2 alone had minimal effects on cell death and proliferation. Taken together, our study suggests that both HDAC1 and HDAC2 exert pro-survival effects in HCC cells, and the combination of isoform-specific HDAC inhibitors against both HDACs may be effective in targeting HCC to reduce mortality.
Resumo:
Dissertação de Mestrado, Gestão da Água e da Costa, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2010
Resumo:
This paper studies seemingly unrelated linear models with integrated regressors and stationary errors. By adding leads and lags of the first differences of the regressors and estimating this augmented dynamic regression model by feasible generalized least squares using the long-run covariance matrix, we obtain an efficient estimator of the cointegrating vector that has a limiting mixed normal distribution. Simulation results suggest that this new estimator compares favorably with others already proposed in the literature. We apply these new estimators to the testing of purchasing power parity (PPP) among the G-7 countries. The test based on the efficient estimates rejects the PPP hypothesis for most countries.
Resumo:
Les chutes chez les personnes âgées représentent un problème majeur. Il n’est donc pas étonnant que l’identification des facteurs qui en accroissent le risque ait mobilisé autant d’attention. Les aînés plus fragiles ayant besoin de soutien pour vivre dans la communauté sont néanmoins demeurés le parent pauvre de la recherche, bien que, plus récemment, les autorités québécoises en aient fait une cible d’intervention prioritaire. Les études d’observation prospectives sont particulièrement indiquées pour étudier les facteurs de risque de chutes chez les personnes âgées. Leur identification optimale est cependant compliquée par le fait que l’exposition aux facteurs de risque peut varier au cours du suivi et qu’un même individu peut subir plus d’un événement. Il y a 20 ans, des chercheurs ont tenté de sensibiliser leurs homologues à cet égard, mais leurs efforts sont demeurés vains. On continue aujourd’hui à faire peu de cas de ces considérations, se concentrant sur la proportion des personnes ayant fait une chute ou sur le temps écoulé jusqu’à la première chute. On écarte du coup une quantité importante d’information pertinente. Dans cette thèse, nous examinons les méthodes en usage et nous proposons une extension du modèle de risques de Cox. Nous illustrons cette méthode par une étude des facteurs de risque susceptibles d’être associés à des chutes parmi un groupe de 959 personnes âgées ayant eu recours aux services publics de soutien à domicile. Nous comparons les résultats obtenus avec la méthode de Wei, Lin et Weissfeld à ceux obtenus avec d’autres méthodes, dont la régression logistique conventionnelle, la régression logistique groupée, la régression binomiale négative et la régression d’Andersen et Gill. L’investigation est caractérisée par des prises de mesures répétées des facteurs de risque au domicile des participants et par des relances téléphoniques mensuelles visant à documenter la survenue des chutes. Les facteurs d’exposition étudiés, qu’ils soient fixes ou variables dans le temps, comprennent les caractéristiques sociodémographiques, l’indice de masse corporelle, le risque nutritionnel, la consommation d’alcool, les dangers de l’environnement domiciliaire, la démarche et l’équilibre, et la consommation de médicaments. La quasi-totalité (99,6 %) des usagers présentaient au moins un facteur à haut risque. L’exposition à des risques multiples était répandue, avec une moyenne de 2,7 facteurs à haut risque distincts par participant. Les facteurs statistiquement associés au risque de chutes incluent le sexe masculin, les tranches d’âge inférieures, l’histoire de chutes antérieures, un bas score à l’échelle d’équilibre de Berg, un faible indice de masse corporelle, la consommation de médicaments de type benzodiazépine, le nombre de dangers présents au domicile et le fait de vivre dans une résidence privée pour personnes âgées. Nos résultats révèlent cependant que les méthodes courantes d’analyse des facteurs de risque de chutes – et, dans certains cas, de chutes nécessitant un recours médical – créent des biais appréciables. Les biais pour les mesures d’association considérées proviennent de la manière dont l’exposition et le résultat sont mesurés et définis de même que de la manière dont les méthodes statistiques d’analyse en tiennent compte. Une dernière partie, tout aussi innovante que distincte de par la nature des outils statistiques utilisés, complète l’ouvrage. Nous y identifions des profils d’aînés à risque de devenir des chuteurs récurrents, soit ceux chez qui au moins deux chutes sont survenues dans les six mois suivant leur évaluation initiale. Une analyse par arbre de régression et de classification couplée à une analyse de survie a révélé l’existence de cinq profils distinctifs, dont le risque relatif varie de 0,7 à 5,1. Vivre dans une résidence pour aînés, avoir des antécédents de chutes multiples ou des troubles de l’équilibre et consommer de l’alcool sont les principaux facteurs associés à une probabilité accrue de chuter précocement et de devenir un chuteur récurrent. Qu’il s’agisse d’activité de dépistage des facteurs de risque de chutes ou de la population ciblée, cette thèse s’inscrit dans une perspective de gain de connaissances sur un thème hautement d’actualité en santé publique. Nous encourageons les chercheurs intéressés par l’identification des facteurs de risque de chutes chez les personnes âgées à recourir à la méthode statistique de Wei, Lin et Weissfeld car elle tient compte des expositions variables dans le temps et des événements récurrents. Davantage de recherches seront par ailleurs nécessaires pour déterminer le choix du meilleur test de dépistage pour un facteur de risque donné chez cette clientèle.
Resumo:
In CoDaWork’05, we presented an application of discriminant function analysis (DFA) to 4 different compositional datasets and modelled the first canonical variable using a segmented regression model solely based on an observation about the scatter plots. In this paper, multiple linear regressions are applied to different datasets to confirm the validity of our proposed model. In addition to dating the unknown tephras by calibration as discussed previously, another method of mapping the unknown tephras into samples of the reference set or missing samples in between consecutive reference samples is proposed. The application of these methodologies is demonstrated with both simulated and real datasets. This new proposed methodology provides an alternative, more acceptable approach for geologists as their focus is on mapping the unknown tephra with relevant eruptive events rather than estimating the age of unknown tephra. Kew words: Tephrochronology; Segmented regression
Resumo:
Background: Infection with multiple types of human papillomavirus (HPV) is one of the main risk factors associated with the development of cervical lesions. In this study, cervical samples collected from 1,810 women with diverse sociocultural backgrounds, who attended to their cervical screening program in different geographical regions of Colombia, were examined for the presence of cervical lesions and HPV by Papanicolau testing and DNA PCR detection, respectively. Principal Findings: The negative binomial distribution model used in this study showed differences between the observed and expected values within some risk factor categories analyzed. Particularly in the case of single infection and coinfection with more than 4 HPV types, observed frequencies were smaller than expected, while the number of women infected with 2 to 4 viral types were higher than expected. Data analysis according to a negative binomial regression showed an increase in the risk of acquiring more HPV types in women who were of indigenous ethnicity (+37.8%), while this risk decreased in women who had given birth more than 4 times (-31.1%), or were of mestizo (-24.6%) or black (-40.9%) ethnicity. Conclusions: According to a theoretical probability distribution, the observed number of women having either a single infection or more than 4 viral types was smaller than expected, while for those infected with 2-4 HPV types it was larger than expected. Taking into account that this study showed a higher HPV coinfection rate in the indigenous ethnicity, the role of underlying factors should be assessed in detail in future studies.
Resumo:
Even though antenatal care is universally regarded as important, determinants of demand for antenatal care have not been widely studied. Evidence concerning which and how socioeconomic conditions influence whether a pregnant woman attends or not at least one antenatal consultation or how these factors affect the absences to antenatal consultations is very limited. In order to generate this evidence, a two-stage analysis was performed with data from the Demographic and Health Survey carried out by Profamilia in Colombia during 2005. The first stage was run as a logit model showing the marginal effects on the probability of attending the first visit and an ordinary least squares model was performed for the second stage. It was found that mothers living in the pacific region as well as young mothers seem to have a lower probability of attending the first visit but these factors are not related to the number of absences to antenatal consultation once the first visit has been achieved. The effect of health insurance was surprising because of the differing effects that the health insurers showed. Some familiar and personal conditions such as willingness to have the last children and number of previous children, demonstrated to be important in the determination of demand. The effect of mother’s educational attainment was proved as important whereas the father’s educational achievement was not. This paper provides some elements for policy making in order to increase the demand inducement of antenatal care, as well as stimulating research on demand for specific issues on health.
Resumo:
A new class of parameter estimation algorithms is introduced for Gaussian process regression (GPR) models. It is shown that the integration of the GPR model with probability distance measures of (i) the integrated square error and (ii) Kullback–Leibler (K–L) divergence are analytically tractable. An efficient coordinate descent algorithm is proposed to iteratively estimate the kernel width using golden section search which includes a fast gradient descent algorithm as an inner loop to estimate the noise variance. Numerical examples are included to demonstrate the effectiveness of the new identification approaches.
A bivariate regression model for matched paired survival data: local influence and residual analysis
Resumo:
The use of bivariate distributions plays a fundamental role in survival and reliability studies. In this paper, we consider a location scale model for bivariate survival times based on the proposal of a copula to model the dependence of bivariate survival data. For the proposed model, we consider inferential procedures based on maximum likelihood. Gains in efficiency from bivariate models are also examined in the censored data setting. For different parameter settings, sample sizes and censoring percentages, various simulation studies are performed and compared to the performance of the bivariate regression model for matched paired survival data. Sensitivity analysis methods such as local and total influence are presented and derived under three perturbation schemes. The martingale marginal and the deviance marginal residual measures are used to check the adequacy of the model. Furthermore, we propose a new measure which we call modified deviance component residual. The methodology in the paper is illustrated on a lifetime data set for kidney patients.
Resumo:
In this paper we have discussed inference aspects of the skew-normal nonlinear regression models following both, a classical and Bayesian approach, extending the usual normal nonlinear regression models. The univariate skew-normal distribution that will be used in this work was introduced by Sahu et al. (Can J Stat 29:129-150, 2003), which is attractive because estimation of the skewness parameter does not present the same degree of difficulty as in the case with Azzalini (Scand J Stat 12:171-178, 1985) one and, moreover, it allows easy implementation of the EM-algorithm. As illustration of the proposed methodology, we consider a data set previously analyzed in the literature under normality.