311 resultados para Multilayers


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocrystalline Ge embedded in amorphous silicon dioxide matrix was fabricated by oxidizing hydrogenated amorphous Si/hydrogenated amorphous Ge (a-Si:H/a-Ge:H) multilayers. The structures before and after oxidation were systematically investigated. The orange-green light emission was observed at room temperature and the luminescence peak was located at 2.2 eV. The size dependence in the photoluminescence peak energy was not observed and the luminescence intensity was increased gradually with oxidation time. The origin for this visible light emission is discussed. In contrast to the simple quantum effect model, the surface defect states of nanocrystalline Ge are believed to play an important role in radiative recombination process. (C) 1999 American Institute of Physics. [S0003-6951(99)02425-0].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self-organized InGaAs/GaAs quantum dots (QDs) stacked multilayers have been prepared by solid source molecular beam epitaxy. Cross-sectional transmission electron microscopy shows that the InGaAs QDs are nearly perfectly vertically aligned in the growth direction [100]. The filtering effect on the QDs distribution is found to be the dominant mechanism leading to vertical alignment and a highly uniform size distribution. Moreover, we observe a distinct infrared absorption from the sample in the range of 8.6-10.7 mu m. This indicates the potential of QDs multilayer structure for use as infrared photodetector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocrystalline Ge embedded in SiOx matrix is fabricated by oxidizing hydrogenated amorphous Sice alloys or hydrogenated amorphous Si/hydrogenated amorphous Ge multilayers. The structures before and after oxidation are systematically investigated. Visible light emission was observed from both samples. The luminescence peak is located at 2.2 eV which is independent of the starting materials. Compared to the luminescence from unlayered samples, the photoluminescence spectrum from multilayered samples has a narrower band width, which can be attributed to the uniform size distribution. The light emission origin is also discussed briefly and a mechanism different from the quantum size effect is suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interface states of [NiFe/Mo](30) and [Fe/Mo](30) multilayers have been investigated by x-ray small angle reflection and diffuse scattering. Significant interface roughness correlation was observed in both ultrathin [NiFe/Mo](30) and [Fe/Mo](30) multilayers. An uncorrelated roughness of about 27-3.1 Angstrom was revealed in the [NiPe/Mo](30) multilayers, which is explained as originating from a transition layer between the NiFe and the Mo layers. By the technique of diffuse scattering, it is clearly indicated that the interfacial roughness of NiFe/Mo is much smaller than that of Fe/Mo although the lattice mismatch is the same in both multilayers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multicolored optical active planes have been fabricated with magnetron sputter method coupled with selective masking technique. The plane is multilayer structured with Ag nanoparticles and TiO2 thin layer as the building blocks. It was found that the formed multilayer can be readily wavelength multiplexed by simply overlapping several nano-Ag/TiO2 layered structures, each of which may have different surface plasmon resonance wavelength. Unlike high order multiple resonances of large particles each of the multiplexing wavelengths in such a system is separately tunable. Importantly, it reveals that modification of the TiO2 layer thickness generates a fine tuning of the resonance wavelength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multicolored optical active planes have been fabricated with magnetron sputter method coupled with selective masking technique. The plane is multilayer structured with Ag nanoparticles and TiO2 thin layer as the building blocks. It was found that the formed multilayer can be readily wavelength multiplexed by simply overlapping several nano-Ag/TiO2 layered structures, each of which may have different surface plasmon resonance wavelength. Unlike high order multiple resonances of large particles each of the multiplexing wavelengths in such a system is separately tunable. Importantly, it reveals that modification of the TiO2 layer thickness generates a fine tuning of the resonance wavelength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetic multilayers [NixFe100-x/Mo-30] grown by dc-magnetron sputtering were investigated by x-ray small-angle reflection and high-angle diffraction. Structural parameters of the multilayers such as the superlattice periods, the interfacial roughness, and interplane distance were obtained. It was found that for our NixFe100-x/Mo system, the Mo layer has bcc structure with [110] preferential orientation, while the preferential orientation of the NixFe100-x layer changes from a fee structure with [111] preferential orientation to a bcc structure with [110] preferential orientation with decreasing values of x. An intermixing layer located in the interlayer region between the NixFe100-x and Mo layers exists in the multilayers, and its thickness is almost invariant with respect to an increase of Mo layer thickness and/or a decrease of x in the region of x greater than or equal to 39. The thickness of the intermixing layer falls to zero when x less than or equal to 23.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the temperature dependence of photoluminescence (PL) properties of a number of self-organized InAs/GaAs heterostructures with InAs layer thickness ranging from 0.5 to 3 ML. The temperature dependence of InAs exciton emission and linewidth was found to display a significant difference when the InAs layer thickness is smaller or larger than the critical thickness around 1.7 ML. The fast redshift of PL energy and an anomalous decrease of linewidth with increasing temperature were observed and attributed to the efficient relaxation process of carriers in multilayer samples, resulting from the spread and penetration of the carrier wave functions in coupled InAs quantum dots. The measured thermal activation energies of different samples demonstrated that the InAs wetting layer may act as a barrier for the thermionic emission of carriers in high-quality InAs multilayers, while in InAs monolayers and submonolayers the carriers are required to overcome the GaAs barrier to escape thermally from the localized states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self-organized InGaAs/GaAs quantum dots (QDs) stacked multilayers have been prepared by solid source molecular beam epitaxy. Cross-sectional transmission electron microscopy shows that the InGaAs QDs are nearly perfectly vertically aligned in the growth direction [100]. The filtering effect on the QDs distribution is found to be the dominant mechanism leading to vertical alignment and a highly uniform size distribution. Moreover, we observe a distinct infrared absorption from the sample in the range of 8.6-10.7 mu m. This indicates the potential of QDs multilayer structure for use as infrared photodetector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multilayers with a structure of Si/[Fe(10 nm)/CU(10 nm)](5) were deposited on Si(100) substrates and then irradiated at room temperature by using 2-MeV Xe20+. The modifications of the multilayers were characterized using a depth profile analysis of the Auger electron spectroscopy (AES) data and the evolution of crystallite structures of the multilayers were analyzed by using X-ray diffraction (XRD). The AES depth profiles indicated that de-mixing of the Fe and the Cu layers was observed at low ion fluences, but inter-mixing of the Fe and the Cu layers was found at high ion fluences and destroyed the layered structure of the multilayers. The obtained XRD patterns showed that, after irradiation by 2-MeV Xe20+ at; 2 x 10(16) ions/cm(2), the peaks of the multilayers related to a Cu-based fee solid solution and an Fe-based bee solid solution phase became visible, which implied that the inter-mixing at the Fe/Cu interface resulted in the formation of new phases. A possible mechanism of modification in the Fe/Cu multilayers induced by ion irradiation is briefly discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two kinds of Fe/Cu multilayers with different modulation wavelength were deposited on cleaved Si(100) substrates and then irradiated at room temperature using 400 keV Xe20+ in a wide range of irradiation fluences. As a comparison, thermal annealing at 300-900 degrees C was also carried out in vacuum. Then the samples were analyzed by XRD and the evolution of crystallite structures induced by irradiation was investigated. The obtained XRD patterns showed that, with increase of the irradiation fluence, the peaks of Fe became weaker, the peaks related to Cu-based fcc solid solution and Fe-based bcc solid solution phase became visible and the former became strong gradually. This implied that the intermixing at the Fe/Cu interface induced by ion irradiation resulted in the formation of the new phases which could not be achieved by thermal annealing. The possible intermixing mechanism of Fe/Cu multilayers induced by energetic ion irradiation was briefly discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Knowing that Fe is sensitive to swift heavy ion irradiations whereas Au and Al are not, the behavior of nanometric metallic multilayer systems, like [Fe(3 nm)/Au(x)](y) and [Fe(3 nm)/Al(x)](y) with x ranging between 1 and 10 mn, were studied within the inelastic thermal spike model. In addition to the usual cylindrical geometry of energy dissipation perpendicular to the ion projectile direction, the heat transport along the ion path was implemented in the electronic and atomic sub-systems. The simulations were performed using three different values of linear energy transfer corresponding to 3 MeV/u of Pb-208, Xe-132 and Kr-84 ions. For the Fe/Au system, evidence of appearance of a molten phase was found in the entire Au layer, provided the Au thickness is less than 7 nm and 3 nm for Pb and Xe ions, respectively. For the Fe/Al(x) system irradiated with Pb ions, the Al layers with a thickness less than 4 nm melt along the entire ion track. Surprisingly, the Fe layer does not melt if the Al thickness is larger than 2 nm, although the deposited energy surpasses the electronic stopping power threshold of track formation in Fe. For Kr ions melting does not occur in any of the multilayer systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel method to tune surface wettability rapidly and reversibly has been developed by ion exchange of the counterions at the surface of a multilayer film assembled via electrostatic interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a general method for incorporation of nanoparticles into polyelectrolyte multilayer (PEM) thin films by utilizing the excess charges and associated counterions present in the PEMs. Silver ions were introduced directly into multilayers assembled from poly(diallyldimethylammonium chloride) (PDDA) and poly(styrene sulfonate) (PSS), (PDDA/PSS)(n), by a rapid ion exchange process, which were then converted into silver nanoparticles via in situ reduction to create composite thin films. The size and the content of the nanoparticles in the film call be tuned by adjusting the ionic strength in the polyelectrolyte solutions used for the assembly. Spatial control over the distribution of the nanoparticles in the PEM was achieved via the use of multilayer heterostructure containing PDDA/PSS bilayer blocks assembled at different salt concentrations. Because excess charges and counterions are always present in any PEM, this approach can be applied to fabricate a wide variety of composite thin Films based on electrostatic self-assembly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Counterions present at the surface of polyelectrolyte multilayers were utilized for the introduction of charged species into the multilayer via ion exchange. A typical polyelectrolyte multilayer film with Na+ counterions in the outermost layer was immersed in an AgNO3 aqueous solution and the rapid ion-exchange process was complete within 1 min. The silver ions thus introduced were then reduced in situ and silver nanoparticles were produced at the surface of the multilayer assembly. This example demonstrates that the counterions naturally occurring in every polyelectrolyte multilayer film can be a convenient vehicle for the introduction of various functionalities to the film.