964 resultados para Movimento Matemática Moderna - 1960
Resumo:
Dissertação para obtenção do Grau de Mestre em Ensino de Matemática
Resumo:
Dissertação para obtenção do Grau de Doutor em Ciências da Educação
Resumo:
Reflexión sobre la enseñanza de matemáticas en la enseñanza media y superior, a partir de las cuestiones tratadas en la XIII Reunión de Profesores de Matemáticas, celebrada en Dinamarca, a cargo de la Comisión Internacional para el Estudio y Mejora de la enseñanza de las Matemáticas. Además de ponencias individuales de especialistas en la materia, diversos países presentaron informes, que presentan numerosos rasgos comunes. Se destacan los siguientes: la transformación social experimentada por la enseñanza secundaria debida a la afluencia incesante de alumnos, como consecuencia, la división de la enseñanza media en dos ciclos, inferior y superior, y la subdivisión en diversas ramas, la superación de exámenes intermedios y su sustitución por exámenes de Estado, realizados en forma masiva, la discrepancia entre la preparación científica que reciben loa bachillerea, tanto en bagaje de conocimientos, como en hábitos de trabajo, y las exigencias mínimas que estima necesarias la Universidad para iniciar su labor. Para concluir se reflexiona en torno a la metodología de la matemática moderna, que busca decantarse entre las matemáticas tradicionales o Matemáticas de Base, y los partidarios de unas matemáticas que se renueven, o renovadores.
Resumo:
Se ha intentado ver la teoría de los conjuntos en matemáticas como algo nuevo procedente de la matemática moderna , que se puso de moda y se introdujo en esta asignatura. Pero para ver que esto no es así, queremos ver el papel que juega la teoría de los conjuntos en la matemática elemental. El armazón matemático está constituido por teoremas, definiciones, clasificaciones y postulados. En definitiva, si ponemos algún ejemplo de aritmética o de geometría y no sólo nos referiremos a los conjuntos copulativos, sino también a los conjuntos naturales disyuntivos. De lo que se trata es de demostrar que toda la matemática tiene un entramado de conjunto tan relacionado que es imposible entenderlas sin entender los conjuntos al estar cualquier elemento de la misma relacionado por categorías y subcategorías de conjuntos y subconjuntos.
Resumo:
Estudio acerca del desarrollo de la ciencia matemática a lo largo de la historia. Se destaca que el conocimiento de las matemáticas permite a los más jóvenes ser más libres. Posteriormente se destacan tres aspectos muy característicos en esta maduración de la ciencia matemática: una preocupación creciente por el rigor, la intervención sistemática de lo axiomático y una abstracción cada vez mayor. En base a estos tres aspectos se analizan las figuras más significativas de las matemáticas y sus principales aportes. La matemática abstracta sería el máximo punto en ese desarrollo, que se inicia en 1920, gracias a figuras como Artin, Noether o Van der Waerden. Se destaca que el punto de partida de la Matemática moderna es lo teoría de conjuntos, necesaria para definir estructuras susceptibles de aplicarse a cualquier especie de objetos. La matemática moderna, se presenta así como un saber muy lejano a la matemática clásica, por su lenguaje, por su simbolismo, por sus aires de abstracción, por los problemas de que se ocupa etc. Para finalizar se subraya la idea de que la evolución, en este caso de la ciencia matemática, no es un hecho aislado, sino una tendencia universal hacia una mayor madurez y dominio del mundo material.
Resumo:
Los importantes cambios conceptuales habidos en la matemática y la consiguiente renovación respecto de sus contenidos y pedagogía, han sentado los fundamentos de una educación de la matemática verdaderamente lógica. Estas nuevas perspectivas se materializan en las conclusiones a las que llega el congreso internacional sobre la enseñanza de la matemática moderna, celebrado en Lyon.
Resumo:
Se presenta un trabajo, de carácter experimental, cuya finalidad es la implantación de una nueva didáctica de la matemática en la enseñanza primaria. Se ha llevado a cabo con dos grupos de alumnas de cinco años de edad del Colego San Pío X, de Barcelona, durante el curso escolar 1966-67. Para ello, se realiza la planificación de objetivos y la planificación de actividades con arreglo a los contenidos y métodos de la matemática moderna. Por último, se señalan las conclusiones extraídas del estudio.
Resumo:
Estudiar el desarrollo histórico y las contribuciones del Centro Belga de Pedagogía de la Matemática (CBPM) en el periodo 1958-1973. Conocer las obras de G. Papy. Conocer las publicaciones del CBPM y su repercusión en el currículum de Primaria y Secundaria. Analizar los artículos publicados en la revista del centro, desde su aparición en 1968 en el contexto de la Información Internacional sobre la reforma de las enseñanzas de las matemáticas. Mostrar la necesidad de una reforma en la enseñanza de las matemáticas e indicar los mecanismos que impulsaron la creación de una comisión internacional para el estudio y mejora de la enseñanza de las matemáticas, mostrando el espíritu de la Reforma del CBPM. Indicar cómo se inicia la reforma y se ponen las bases de las experiencias posteriores, mediante la elaboración de una metodología pedagógica. Mostrar la forma en la que se ha reconstruido la matemática en el Ciclo Secundario Inferior, estudio de los medios Pedagógicos inventados por Papy y colaboradores, contrucción de la geometría plana. Mostrar la forma en la que se realiza la reconstrucción del edificio matemático para el Secundario Superior. Indicar la situación de la matemática en la Enseñanza Primaria, destacando los cambios en los métodos pedagógicos empleados. Mostrar la necesidad de reciclaje del profesorado en el CPDM. Realización de una investigación utilizando el Minicomputador de Papy en la enseñanza de las matemáticas con alumnos de primero y segundo de EGB. Indicar las proyecciones del CBPM. Compuesta por 39 alumnos de primero de EGB y 32 alumnos de segundo de EGB de la escuela de prácticas de la Normal, en Salamanca. Análisis de tareas: Conociendo la conducta final deseada, ésta ha sido descompuesta en un repertorio de conductas, configurándose en una secuencia hasta llegar al desempeño final. Las etapas seguidas en cada actividad han sido: a) Fase manipulativa: Los niños manipulan el Minicomputador individualmente. b) Fase Verbal: Un niño o todos los niños cuentan lo que han realizado. c) Fase simbólica: Lo realizado se traduce gráficamente a signos matemáticos. Para la obtención de información se ha utilizado la observación y hojas de registro. No se han utilizado técnicas estadísticas. Se han seguido las indicaciones del Centro Belga de Pedagogía de las Matemáticas (CBPM), respecto la metodología de la enseñanza de las matemáticas con alumnos de primero y segundo de EGB, se ha utilizado el Minicomputador de Papy como recurso didáctico para lograr que los alumnos aprendan de forma sencilla las operaciones de adición y sustración y lo apliquen a situaciones reales. La utilización del Minicomputador ha demostrado ser un instrumento adecuado para conseguir los objetivos del área de matemáticas, demostrando la utilidad de dicho recurso, unido a la utilización de algoritmos logrando un mejor rendimiento en el cálculo mental y un recurso de gran ayuda en la estrategia de resolución de problemas. Se ha analizado el objetivo perseguido y logrado por el CBPM: La reforma de la enseñanza de las matemáticas a nivel de Primaria y Secundaria, inicialmente esta reforma es producida en Bélgica y posteriormente es trasladada a otros países, concretamente España ha sido uno de ellos. Esta Reforma debía tener en cuenta: La matemática de nuestro tiempo y el desarrollo psicoafectivo del niño y adolescente, tratando de acercar las matemáticas a los niños de una forma amena y atractiva. La matemática que se imparte en los centros de Primaria, Secundaria, Bachiller es la desarrollada por este grupo de matemáticos aglutinados bajo el nombre de Nicolás Bourbaky y definida en sus 'Elementos de la Matemática' que utiliza el método axiomático y la estructura, teniendo como marco el universo conjuntista de Cántor. En el trabajo se recogen las sucesivas etapas en las que se ha procedido a la reconstrucción del edificio matemático a nivel del secundario inferior, secundario superior (sección ciencias) y primario. Se ha tenido presente la matemática aplicada y la matematización de situaciones reales de la vida cotidiana, en la que viven los niños. En esta reconstrucción se han puesto en práctica nuevos medios pedagógicos esencialmente no verbales: Diagramas de Venn, Grafos, el Minicomputador de Papy. Con el Minicomputador de Papy se ha realizado una investigación durante el curso académico, utilizándolo como recurso didáctico para la enseñanza de las Matemáticas en grupos de primero y segundo de EGB, recogiendo en esta investigación las experincias llevadas a cabo en la escuela. El alumno es un elemento activo en la reconstrucción de la Matemática, en el secundario se ha ido iniciando progresivamente en el método axiomático. El reciclaje del profesorado ha sido una atención constante del CBPM que ha organizado Jornadas y Grupos de estudio para exponer y discutir sus experiencias a la vez que se llevaba a cabo una puesta al día del profesorado, en relación con la aplicación de nuevas metodologías de trabajo y los resultados obtenidos al utilizar recursos tan valiosos como el Minicomputador de Papy en las aulas. La proyección internacional del Centro ha sido notable. La obra de Papy ha sido traducida a veinte idiomas y se han realizado conferencias en cincuenta países; formando a gran cantidad de maestros en la utilización de las nuevas metodologías en la enseñanza de las matemáticas y un replanteamiento de las bases teóricas de la matemática moderna tanto a nivel de Primaria como de Secundaria.
Resumo:
Com o movimento da Matemática Moderna, a partir de 1950, o ensino da matemática passou a enfatizar o simbolismo e a exigir dos alunos grandes abstrações, distanciando a matemática da vida real. O que se percebe é que o aluno formado por este currículo aprendeu muito pouco de geometria e não consegue perceber a relação deste conteúdo com sua realidade. Por outro lado, o professor que não conhece geometria não consegue perceber a beleza e a importância que a mesma possui para a formação do cidadão. A geometria estimula a criança a observar, perceber semelhanças, diferenças e a identificar regularidades. O objetivo deste trabalho é identificar o nível de conhecimento dos alunos do Centro Específico de Formação e Aperfeiçoamento ao Magistério (CEFAM), futuros professores da 1ª a 4ª séries do Ensino Fundamental do Estado de São Paulo, quanto aos conceitos de ponto, reta, plano, ângulos, polígonos e circunferências e também verificar as contribuições do computador para a construção de conceitos geométricos. Para atingir esses objetivos, foi desenvolvida uma pesquisa com 30 alunos do CEFAM de Presidente Prudente-SP, na qual, com base no diagnóstico das dificuldades de aprendizagem, organizaram e desenvolveram-se os momentos de formação, que utilizaram o computador como ferramenta de aprendizagem e projetos de trabalho tendo como aporte teórico a abordagem construcionista. O futuro professor que não dominar a geometria e não perceber sua relação com a natureza não conseguirá contribuir para o desenvolvimento do pensamento geométrico da criança. Esse pensamento é que permite a criança observar, compreender, descrever e representar, de forma organizada, o mundo em que vive.
Resumo:
Pós-graduação em Educação Matemática - IGCE
Resumo:
Relatório da Prática Profissional Supervisionada Mestrado Em Educação Pré-Escolar
Resumo:
Relatório de Estágio submetido à Escola Superior de Teatro e Cinema para cumprimento dos requisitos necessários à obtenção do Grau de Mestre em Teatro – especialização Produção.
Resumo:
Estudio y programación de los fines de la enseñanza de la Matemática Moderna. Estudio del diseño experimental necesario, para estudiar la correlación entre los niveles abstractos de Matemáticas y los niveles mentales del alumno, y para la experimentación de cuestionarios. Estudio y experimentación del material necesario y de las pruebas objetivas. Estudio, construcción y experimentación de tests normalizados. Estudio de la orientación escolar y la formación del profesorado. Escuelas y Colegios Universitarios de Granada y Bilbao. Centros de EGB y Bachillerato de Granada, Bilbao y Málaga. Centros experimentales de Bachillerato pertenecientes al ICE. Se organizan en cuatro grupos: subgrupo de metodología, subgrupo de programación de objetivos en Matemática Moderna, subgrupo de profesorado y subgrupo de diseño de Cálculo Estadístico. Construcción y experimentación de un modelo de comportamiento de los alumnos ante la probabilidad y respecto de algunas variables 'tipo-Stanford'. Continuación de la adquisición por alumnos de BUP de los cinco factores de la taxonomía, NLSMA. Evaluación de la programación de objetivos a través de una prueba. Encuesta al profesorado seleccionador de los institutos. Diseño factorial ortogonal, para el estudio de la influencia de varios factores en la dificultad de resolución de cuestiones de probabilidad en BUP. Técnica de las variables estructurales, y en el sentido G. Stanford-Nesher. Análisis de varianza asociado a un diseño en bloques. En el grupo de geometría: los factores no influyen igualmente, es decir, hay clara influencia de algunos de ellos sobre los demás, en el resultado de los exámenes -al 99- es decir, hay un desarrollo menos armónico de la Geometría en BUP, que del análisis S. En el grupo de análisis: es aceptable que todos lo factores influyan igualmente en el resultado de la prueba -95-.
Resumo:
Estudiar algunos aspectos del desarrollo intelectual a través del aprendizaje, ver cuales son estos aspectos y las consecuencias que pueden derivarse de su estudio, es decir, sus aportaciones tanto teóricas como prácticas. A/ 20 niños débiles mentales que asisten a una escuela para deficientes intelectuales, con cocientes intelectuales entre 45 y 65 y edades cronológicas entre 6,5 y 11,2 años. B/ 8 niños que asisten a una clase reducida por representar algunos retrasos escolares, con edades comprendidas entre 7,6 años y 9,8 años, y con un coeficiente intelectual de 92 a 110. Marco teórico: describe algunos aspectos del desarrollo intelectual a través del aprendizaje y las consecuencias de su estudio tanto teóricas como prácticas. Hace una síntesis de los trabajos más importantes realizados anteriormente sobre aprendizajes de nociones operatorias. Marco empírico: toma dos muestras, una de niños deficientes psíquicos, y otra de niños normales, con dos subgrupos cada una, aplica sobre el grupo experimental un aprendizaje de conservación de cantidades y de clasificación. Compara el grupo de control y el grupo experimental. Pruebas operatorias de Piaget, prueba de construcción de colecciones y test de Wisc. Investigación experimental. Puntuaciones tipificadas. Método transversal. El aprendizaje no modifica sustancialmente el orden de adquisición de las nociones ni el carácter de las formas que utilizan los niños para alcanzar niveles superiores de organización intelectual. A los 10 años, la totalidad de las pruebas son superadas por la mayoría de los sujetos excepto la de las operaciones de intersección y de división de clases. Hay que interrogarse sobre el papel que desempeñan los ejercicios escolares en el desarrollo de las estructuras lógicas de clasificación y la utilización que se hace en las escuelas de la 'Matemática moderna'. La mecanización de las respuestas del niño es el polo opuesto de la comprensión real de las operaciones, a la cual sólo se puede acceder a traves de una construcción individual, es decir, de una creación por parte del niño de las adquisiciones de nuestra cultura.
Resumo:
resumen ofrecido por la publicación