869 resultados para Mobile robots
Resumo:
In the past years, we could observe a significant amount of new robotic systems in science, industry, and everyday life. To reduce the complexity of these systems, the industry constructs robots that are designated for the execution of a specific task such as vacuum cleaning, autonomous driving, observation, or transportation operations. As a result, such robotic systems need to combine their capabilities to accomplish complex tasks that exceed the abilities of individual robots. However, to achieve emergent cooperative behavior, multi-robot systems require a decision process that copes with the communication challenges of the application domain. This work investigates a distributed multi-robot decision process, which addresses unreliable and transient communication. This process composed by five steps, which we embedded into the ALICA multi-agent coordination language guided by the PROViDE negotiation middleware. The first step encompasses the specification of the decision problem, which is an integral part of the ALICA implementation. In our decision process, we describe multi-robot problems by continuous nonlinear constraint satisfaction problems. The second step addresses the calculation of solution proposals for this problem specification. Here, we propose an efficient solution algorithm that integrates incomplete local search and interval propagation techniques into a satisfiability solver, which forms a satisfiability modulo theories (SMT) solver. In the third decision step, the PROViDE middleware replicates the solution proposals among the robots. This replication process is parameterized with a distribution method, which determines the consistency properties of the proposals. In a fourth step, we investigate the conflict resolution. Therefore, an acceptance method ensures that each robot supports one of the replicated proposals. As we integrated the conflict resolution into the replication process, a sound selection of the distribution and acceptance methods leads to an eventual convergence of the robot proposals. In order to avoid the execution of conflicting proposals, the last step comprises a decision method, which selects a proposal for implementation in case the conflict resolution fails. The evaluation of our work shows that the usage of incomplete solution techniques of the constraint satisfaction solver outperforms the runtime of other state-of-the-art approaches for many typical robotic problems. We further show by experimental setups and practical application in the RoboCup environment that our decision process is suitable for making quick decisions in the presence of packet loss and delay. Moreover, PROViDE requires less memory and bandwidth compared to other state-of-the-art middleware approaches.
Resumo:
MEDEIROS, Adelardo A. D.A survey of control architectures for autonomous mobile robots. J. Braz. Comp. Soc., Campinas, v. 4, n. 3, abr. 1998 .Disponível em:
Resumo:
A combined Short-Term Learning (STL) and Long-Term Learning (LTL) approach to solving mobile robot navigation problems is presented and tested in both real and simulated environments. The LTL consists of rapid simulations that use a Genetic Algorithm to derive diverse sets of behaviours. These sets are then transferred to an idiotypic Artificial Immune System (AIS), which forms the STL phase, and the system is said to be seeded. The combined LTL-STL approach is compared with using STL only, and with using a handdesigned controller. In addition, the STL phase is tested when the idiotypic mechanism is turned off. The results provide substantial evidence that the best option is the seeded idiotypic system, i.e. the architecture that merges LTL with an idiotypic AIS for the STL. They also show that structurally different environments can be used for the two phases without compromising transferability.
Resumo:
Sensor networks are becoming popular nowadays in the development of smart environments. Heavily relying on static sensor and actuators, though, such environments usually lacks of versatility regarding the provided services and interaction capabilities. Here we present a framework for smart environments where a service robot is included within the sensor network acting as a mobile sensor and/or actuator. Our framework integrates on-the-shelf technologies to ensure its adaptability to a variety of sensor technologies and robotic software. Two pilot cases are presented as evaluation of our proposal.
Resumo:
This work discusses the use of optical flow to generate the sensorial information a mobile robot needs to react to the presence of obstacles when navigating in a non-structured environment. A sensing system based on optical flow and time-to-collision calculation is here proposed and experimented, which accomplishes two important paradigms. The first one is that all computations are performed onboard the robot, in spite of the limited computational capability available. The second one is that the algorithms for optical flow and time-to-collision calculations are fast enough to give the mobile robot the capability of reacting to any environmental change in real-time. Results of real experiments in which the sensing system here proposed is used as the only source of sensorial data to guide a mobile robot to avoid obstacles while wandering around are presented, and the analysis of such results allows validating the proposed sensing system.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica
Resumo:
The objective of this paper is to present the evolution and the state-of-the-art in the area of legged locomotion systems. In a first phase different possibilities for implementing mobile robots are discussed, namely the case of artificial legged locomotion systems, while emphasizing their advantages and limitations. In a second phase a historical overview of the evolution of these systems is presented, bearing in mind several particular cases often considered as milestones of technological and scientific progress. After this historical timeline, some of the present-day systems are examined and their performance is analyzed. In a third phase the major areas of research and development that are presently being followed in the construction of legged robots are pointed out. Finally, some still unsolved problems that remain defying robotics research, are also addressed.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
Os sistemas de perceção existentes nos robôs autónomos, hoje em dia, são bastante complexos. A informação dos vários sensores, existentes em diferentes partes do robôs, necessitam de estar relacionados entre si face ao referencial do robô ou do mundo. Para isso, o conhecimento da atitude (posição e rotação) entre os referenciais dos sensores e o referencial do robô é um fator critico para o desempenho do mesmo. O processo de calibração dessas posições e translações é chamado calibração dos parâmetros extrínsecos. Esta dissertação propõe o desenvolvimento de um método de calibração autónomo para robôs como câmaras direcionais, como é o caso dos robôs da equipa ISePorto. A solução proposta consiste na aquisição de dados da visão, giroscópio e odometria durante uma manobra efetuada pelo robô em torno de um alvo com um padrão conhecido. Esta informação é então processada em conjunto através de um Extended Kalman Filter (EKF) onde são estimados necessários para relacionar os sensores existentes no robô em relação ao referencial do mesmo. Esta solução foi avaliada com recurso a vários testes e os resultados obtidos foram bastante similares aos obtidos pelo método manual, anteriormente utilizado, com um aumento significativo em rapidez e consistência.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
The estimation of camera egomotion is a well established problem in computer vision. Many approaches have been proposed based on both the discrete and the differential epipolar constraint. The discrete case is mainly used in self-calibrated stereoscopic systems, whereas the differential case deals with a unique moving camera. The article surveys several methods for mobile robot egomotion estimation covering more than 0.5 million samples using synthetic data. Results from real data are also given
Resumo:
This research work deals with the problem of modeling and design of low level speed controller for the mobile robot PRIM. The main objective is to develop an effective educational tool. On one hand, the interests in using the open mobile platform PRIM consist in integrating several highly related subjects to the automatic control theory in an educational context, by embracing the subjects of communications, signal processing, sensor fusion and hardware design, amongst others. On the other hand, the idea is to implement useful navigation strategies such that the robot can be served as a mobile multimedia information point. It is in this context, when navigation strategies are oriented to goal achievement, that a local model predictive control is attained. Hence, such studies are presented as a very interesting control strategy in order to develop the future capabilities of the system
Resumo:
This paper is focused on the robot mobile platform PRIM (platform robot information multimedia). This robot has been made in order to cover two main needs of our group, on one hand the need for a full open mobile robotic platform that is very useful in fulfilling the teaching and research activity of our school community, and on the other hand with the idea of introducing an ethical product which would be useful as mobile multimedia information point as a service tool. This paper introduces exactly how the system is made up and explains just what the philosophy is behind this work. The navigation strategies and sensor fusion, where machine vision system is the most important one, are oriented towards goal achievement and are the key to the behaviour of the robot
Resumo:
This paper presents the use of a mobile robot platform as an innovative educational tool in order to promote and integrate different curriculum knowledge. Hence, it is presented the acquired experience within a summer course named ldquoapplied mobile roboticsrdquo. The main aim of the course is to integrate different subjects as electronics, programming, architecture, perception systems, communications, control and trajectory planning by using the educational open mobile robot platform PRIM. The summer course is addressed to a wide range of student profiles. However, it is of special interests to the students of electrical and computer engineering around their final academic year. The summer course consists of the theoretical and laboratory sessions, related to the following topics: design & programming of electronic devices, modelling and control systems, trajectory planning and control, and computer vision systems. Therefore, the clues for achieving a renewed path of progress in robotics are the integration of several knowledgeable fields, such as computing, communications, and control sciences, in order to perform a higher level reasoning and use decision tools with strong theoretical base
Resumo:
This paper discusses predictive motion control of a MiRoSoT robot. The dynamic model of the robot is deduced by taking into account the whole process - robot, vision, control and transmission systems. Based on the obtained dynamic model, an integrated predictive control algorithm is proposed to position precisely with either stationary or moving obstacle avoidance. This objective is achieved automatically by introducing distant constraints into the open-loop optimization of control inputs. Simulation results demonstrate the feasibility of such control strategy for the deduced dynamic model