943 resultados para Mixed integer linear programming (MILP) model
Resumo:
We introduce a new Integer Linear Programming (ILP) approach for solving Integer Programming (IP) problems with bilinear objectives and linear constraints. The approach relies on a series of ILP approximations of the bilinear P. We compare this approach with standard linearization techniques on random instances and a set of real-world product bundling problems. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This thesis deals with an investigation of Decomposition and Reformulation to solve Integer Linear Programming Problems. This method is often a very successful approach computationally, producing high-quality solutions for well-structured combinatorial optimization problems like vehicle routing, cutting stock, p-median and generalized assignment . However, until now the method has always been tailored to the specific problem under investigation. The principal innovation of this thesis is to develop a new framework able to apply this concept to a generic MIP problem. The new approach is thus capable of auto-decomposition and autoreformulation of the input problem applicable as a resolving black box algorithm and works as a complement and alternative to the normal resolving techniques. The idea of Decomposing and Reformulating (usually called in literature Dantzig and Wolfe Decomposition DWD) is, given a MIP, to convexify one (or more) subset(s) of constraints (slaves) and working on the partially convexified polyhedron(s) obtained. For a given MIP several decompositions can be defined depending from what sets of constraints we want to convexify. In this thesis we mainly reformulate MIPs using two sets of variables: the original variables and the extended variables (representing the exponential extreme points). The master constraints consist of the original constraints not included in any slaves plus the convexity constraint(s) and the linking constraints(ensuring that each original variable can be viewed as linear combination of extreme points of the slaves). The solution procedure consists of iteratively solving the reformulated MIP (master) and checking (pricing) if a variable of reduced costs exists, and in which case adding it to the master and solving it again (columns generation), or otherwise stopping the procedure. The advantage of using DWD is that the reformulated relaxation gives bounds stronger than the original LP relaxation, in addition it can be incorporated in a Branch and bound scheme (Branch and Price) in order to solve the problem to optimality. If the computational time for the pricing problem is reasonable this leads in practice to a stronger speed up in the solution time, specially when the convex hull of the slaves is easy to compute, usually because of its special structure.
Resumo:
Due to the ongoing trend towards increased product variety, fast-moving consumer goods such as food and beverages, pharmaceuticals, and chemicals are typically manufactured through so-called make-and-pack processes. These processes consist of a make stage, a pack stage, and intermediate storage facilities that decouple these two stages. In operations scheduling, complex technological constraints must be considered, e.g., non-identical parallel processing units, sequence-dependent changeovers, batch splitting, no-wait restrictions, material transfer times, minimum storage times, and finite storage capacity. The short-term scheduling problem is to compute a production schedule such that a given demand for products is fulfilled, all technological constraints are met, and the production makespan is minimised. A production schedule typically comprises 500–1500 operations. Due to the problem size and complexity of the technological constraints, the performance of known mixed-integer linear programming (MILP) formulations and heuristic approaches is often insufficient. We present a hybrid method consisting of three phases. First, the set of operations is divided into several subsets. Second, these subsets are iteratively scheduled using a generic and flexible MILP formulation. Third, a novel critical path-based improvement procedure is applied to the resulting schedule. We develop several strategies for the integration of the MILP model into this heuristic framework. Using these strategies, high-quality feasible solutions to large-scale instances can be obtained within reasonable CPU times using standard optimisation software. We have applied the proposed hybrid method to a set of industrial problem instances and found that the method outperforms state-of-the-art methods.
Resumo:
Index tracking has become one of the most common strategies in asset management. The index-tracking problem consists of constructing a portfolio that replicates the future performance of an index by including only a subset of the index constituents in the portfolio. Finding the most representative subset is challenging when the number of stocks in the index is large. We introduce a new three-stage approach that at first identifies promising subsets by employing data-mining techniques, then determines the stock weights in the subsets using mixed-binary linear programming, and finally evaluates the subsets based on cross validation. The best subset is returned as the tracking portfolio. Our approach outperforms state-of-the-art methods in terms of out-of-sample performance and running times.
Resumo:
Poster presented in the 24th European Symposium on Computer Aided Process Engineering (ESCAPE 24), Budapest, Hungary, June 15-18, 2014.
Resumo:
In this work, we analyze the effect of incorporating life cycle inventory (LCI) uncertainty on the multi-objective optimization of chemical supply chains (SC) considering simultaneously their economic and environmental performance. To this end, we present a stochastic multi-scenario mixed-integer linear programming (MILP) coupled with a two-step transformation scenario generation algorithm with the unique feature of providing scenarios where the LCI random variables are correlated and each one of them has the desired lognormal marginal distribution. The environmental performance is quantified following life cycle assessment (LCA) principles, which are represented in the model formulation through standard algebraic equations. The capabilities of our approach are illustrated through a case study of a petrochemical supply chain. We show that the stochastic solution improves the economic performance of the SC in comparison with the deterministic one at any level of the environmental impact, and moreover the correlation among environmental burdens provides more realistic scenarios for the decision making process.
Resumo:
"July 15, 1971."
Resumo:
Issued also as thesis (M.S.) University of Illinois.
Resumo:
Sequence problems belong to the most challenging interdisciplinary topics of the actuality. They are ubiquitous in science and daily life and occur, for example, in form of DNA sequences encoding all information of an organism, as a text (natural or formal) or in form of a computer program. Therefore, sequence problems occur in many variations in computational biology (drug development), coding theory, data compression, quantitative and computational linguistics (e.g. machine translation). In recent years appeared some proposals to formulate sequence problems like the closest string problem (CSP) and the farthest string problem (FSP) as an Integer Linear Programming Problem (ILPP). In the present talk we present a general novel approach to reduce the size of the ILPP by grouping isomorphous columns of the string matrix together. The approach is of practical use, since the solution of sequence problems is very time consuming, in particular when the sequences are long.
Resumo:
This paper is on the problem of short-term hydro scheduling (STHS), particularly concerning head-dependent reservoirs under competitive environment. We propose a novel method, based on mixed-integer nonlinear programming (MINLP), for optimising power generation efficiency. This method considers hydroelectric power generation as a nonlinear function of water discharge and of the head. The main contribution of this paper is that discharge ramping constraints and start/stop of units are also considered, in order to obtain more realistic and feasible results. The proposed method has been applied successfully to solve two case studies based on Portuguese cascaded hydro systems, providing a higher profit at an acceptable computation time in comparison with classical optimisation methods based on mixed-integer linear programming (MILP).
Resumo:
The integration of wind power in eletricity generation brings new challenges to unit commitment due to the random nature of wind speed. For this particular optimisation problem, wind uncertainty has been handled in practice by means of conservative stochastic scenario-based optimisation models, or through additional operating reserve settings. However, generation companies may have different attitudes towards operating costs, load curtailment, or waste of wind energy, when considering the risk caused by wind power variability. Therefore, alternative and possibly more adequate approaches should be explored. This work is divided in two main parts. Firstly we survey the main formulations presented in the literature for the integration of wind power in the unit commitment problem (UCP) and present an alternative model for the wind-thermal unit commitment. We make use of the utility theory concepts to develop a multi-criteria stochastic model. The objectives considered are the minimisation of costs, load curtailment and waste of wind energy. Those are represented by individual utility functions and aggregated in a single additive utility function. This last function is adequately linearised leading to a mixed-integer linear program (MILP) model that can be tackled by general-purpose solvers in order to find the most preferred solution. In the second part we discuss the integration of pumped-storage hydro (PSH) units in the UCP with large wind penetration. Those units can provide extra flexibility by using wind energy to pump and store water in the form of potential energy that can be generated after during peak load periods. PSH units are added to the first model, yielding a MILP model with wind-hydro-thermal coordination. Results showed that the proposed methodology is able to reflect the risk profiles of decision makers for both models. By including PSH units, the results are significantly improved.
Resumo:
Background: Optimization methods allow designing changes in a system so that specific goals are attained. These techniques are fundamental for metabolic engineering. However, they are not directly applicable for investigating the evolution of metabolic adaptation to environmental changes. Although biological systems have evolved by natural selection and result in well-adapted systems, we can hardly expect that actual metabolic processes are at the theoretical optimum that could result from an optimization analysis. More likely, natural systems are to be found in a feasible region compatible with global physiological requirements. Results: We first present a new method for globally optimizing nonlinear models of metabolic pathways that are based on the Generalized Mass Action (GMA) representation. The optimization task is posed as a nonconvex nonlinear programming (NLP) problem that is solved by an outer- approximation algorithm. This method relies on solving iteratively reduced NLP slave subproblems and mixed-integer linear programming (MILP) master problems that provide valid upper and lower bounds, respectively, on the global solution to the original NLP. The capabilities of this method are illustrated through its application to the anaerobic fermentation pathway in Saccharomyces cerevisiae. We next introduce a method to identify the feasibility parametric regions that allow a system to meet a set of physiological constraints that can be represented in mathematical terms through algebraic equations. This technique is based on applying the outer-approximation based algorithm iteratively over a reduced search space in order to identify regions that contain feasible solutions to the problem and discard others in which no feasible solution exists. As an example, we characterize the feasible enzyme activity changes that are compatible with an appropriate adaptive response of yeast Saccharomyces cerevisiae to heat shock Conclusion: Our results show the utility of the suggested approach for investigating the evolution of adaptive responses to environmental changes. The proposed method can be used in other important applications such as the evaluation of parameter changes that are compatible with health and disease states.
Resumo:
In this work mathematical programming models for structural and operational optimisation of energy systems are developed and applied to a selection of energy technology problems. The studied cases are taken from industrial processes and from large regional energy distribution systems. The models are based on Mixed Integer Linear Programming (MILP), Mixed Integer Non-Linear Programming (MINLP) and on a hybrid approach of a combination of Non-Linear Programming (NLP) and Genetic Algorithms (GA). The optimisation of the structure and operation of energy systems in urban regions is treated in the work. Firstly, distributed energy systems (DES) with different energy conversion units and annual variations of consumer heating and electricity demands are considered. Secondly, district cooling systems (DCS) with cooling demands for a large number of consumers are studied, with respect to a long term planning perspective regarding to given predictions of the consumer cooling demand development in a region. The work comprises also the development of applications for heat recovery systems (HRS), where paper machine dryer section HRS is taken as an illustrative example. The heat sources in these systems are moist air streams. Models are developed for different types of equipment price functions. The approach is based on partitioning of the overall temperature range of the system into a number of temperature intervals in order to take into account the strong nonlinearities due to condensation in the heat recovery exchangers. The influence of parameter variations on the solutions of heat recovery systems is analysed firstly by varying cost factors and secondly by varying process parameters. Point-optimal solutions by a fixed parameter approach are compared to robust solutions with given parameter variation ranges. In the work enhanced utilisation of excess heat in heat recovery systems with impingement drying, electricity generation with low grade excess heat and the use of absorption heat transformers to elevate a stream temperature above the excess heat temperature are also studied.
Resumo:
En el futuro, la gestión del tráfico aéreo (ATM, del inglés air traffic management) requerirá un cambio de paradigma, de la gestión principalmente táctica de hoy, a las denominadas operaciones basadas en trayectoria. Un incremento en el nivel de automatización liberará al personal de ATM —controladores, tripulación, etc.— de muchas de las tareas que realizan hoy. Las personas seguirán siendo el elemento central en la gestión del tráfico aéreo del futuro, pero lo serán mediante la gestión y toma de decisiones. Se espera que estas dos mejoras traigan un incremento en la eficiencia de la gestión del tráfico aéreo que permita hacer frente al incremento previsto en la demanda de transporte aéreo. Para aplicar el concepto de operaciones basadas en trayectoria, el usuario del espacio aéreo (la aerolínea, piloto, u operador) y el proveedor del servicio de navegación aérea deben negociar las trayectorias mediante un proceso de toma de decisiones colaborativo. En esta negociación, es necesaria una forma adecuada de compartir dichas trayectorias. Compartir la trayectoria completa requeriría un gran ancho de banda, y la trayectoria compartida podría invalidarse si cambiase la predicción meteorológica. En su lugar, podría compartirse una descripción de la trayectoria independiente de las condiciones meteorológicas, de manera que la trayectoria real se pudiese calcular a partir de dicha descripción. Esta descripción de la trayectoria debería ser fácil de procesar usando un programa de ordenador —ya que parte del proceso de toma de decisiones estará automatizado—, pero también fácil de entender para un operador humano —que será el que supervise el proceso y tome las decisiones oportunas—. Esta tesis presenta una serie de lenguajes formales que pueden usarse para este propósito. Estos lenguajes proporcionan los medios para describir trayectorias de aviones durante todas las fases de vuelo, desde la maniobra de push-back (remolcado hasta la calle de rodaje), hasta la llegada a la terminal del aeropuerto de destino. También permiten describir trayectorias tanto de aeronaves tripuladas como no tripuladas, incluyendo aviones de ala fija y cuadricópteros. Algunos de estos lenguajes están estrechamente relacionados entre sí, y organizados en una jerarquía. Uno de los lenguajes fundamentales de esta jerarquía, llamado aircraft intent description language (AIDL), ya había sido desarrollado con anterioridad a esta tesis. Este lenguaje fue derivado de las ecuaciones del movimiento de los aviones de ala fija, y puede utilizarse para describir sin ambigüedad trayectorias de este tipo de aeronaves. Una variante de este lenguaje, denominada quadrotor AIDL (QR-AIDL), ha sido desarrollada en esta tesis para permitir describir trayectorias de cuadricópteros con el mismo nivel de detalle. Seguidamente, otro lenguaje, denominado intent composite description language (ICDL), se apoya en los dos lenguajes anteriores, ofreciendo más flexibilidad para describir algunas partes de la trayectoria y dejar otras sin especificar. El ICDL se usa para proporcionar descripciones genéricas de maniobras comunes, que después se particularizan y combinan para formar descripciones complejas de un vuelo. Otro lenguaje puede construirse a partir del ICDL, denominado flight intent description language (FIDL). El FIDL especifica requisitos de alto nivel sobre las trayectorias —incluyendo restricciones y objetivos—, pero puede utilizar características del ICDL para proporcionar niveles de detalle arbitrarios en las distintas partes de un vuelo. Tanto el ICDL como el FIDL han sido desarrollados en colaboración con Boeing Research & Technology Europe (BR&TE). También se ha desarrollado un lenguaje para definir misiones en las que interactúan varias aeronaves, el mission intent description language (MIDL). Este lenguaje se basa en el FIDL y mantiene todo su poder expresivo, a la vez que proporciona nuevas semánticas para describir tareas, restricciones y objetivos relacionados con la misión. En ATM, los movimientos de un avión en la superficie de aeropuerto también tienen que ser monitorizados y gestionados. Otro lenguaje formal ha sido diseñado con este propósito, llamado surface movement description language (SMDL). Este lenguaje no pertenece a la jerarquía de lenguajes descrita en el párrafo anterior, y se basa en las clearances (autorizaciones del controlador) utilizadas durante las operaciones en superficie de aeropuerto. También proporciona medios para expresar incertidumbre y posibilidad de cambios en las distintas partes de la trayectoria. Finalmente, esta tesis explora las aplicaciones de estos lenguajes a la predicción de trayectorias y a la planificación de misiones. El concepto de trajectory language processing engine (TLPE) se usa en ambas aplicaciones. Un TLPE es una función de ATM cuya principal entrada y salida se expresan en cualquiera de los lenguajes incluidos en la jerarquía descrita en esta tesis. El proceso de predicción de trayectorias puede definirse como una combinación de TLPEs, cada uno de los cuales realiza una pequeña sub-tarea. Se le ha dado especial importancia a uno de estos TLPEs, que se encarga de generar el perfil horizontal, vertical y de configuración de la trayectoria. En particular, esta tesis presenta un método novedoso para la generación del perfil vertical. El proceso de planificar una misión también se puede ver como un TLPE donde la entrada se expresa en MIDL y la salida consiste en cierto número de trayectorias —una por cada aeronave disponible— descritas utilizando FIDL. Se ha formulado este problema utilizando programación entera mixta. Además, dado que encontrar caminos óptimos entre distintos puntos es un problema fundamental en la planificación de misiones, también se propone un algoritmo de búsqueda de caminos. Este algoritmo permite calcular rápidamente caminos cuasi-óptimos que esquivan todos los obstáculos en un entorno urbano. Los diferentes lenguajes formales definidos en esta tesis pueden utilizarse como una especificación estándar para la difusión de información entre distintos actores de la gestión del tráfico aéreo. En conjunto, estos lenguajes permiten describir trayectorias con el nivel de detalle necesario en cada aplicación, y se pueden utilizar para aumentar el nivel de automatización explotando esta información utilizando sistemas de soporte a la toma de decisiones. La aplicación de estos lenguajes a algunas funciones básicas de estos sistemas, como la predicción de trayectorias, han sido analizadas. ABSTRACT Future air traffic management (ATM) will require a paradigm shift from today’s mainly tactical ATM to trajectory-based operations (TBOs). An increase in the level of automation will also relieve humans —air traffic control officers (ATCOs), flight crew, etc.— from many of the tasks they perform today. Humans will still be central in this future ATM, as decision-makers and managers. These two improvements (TBOs and increased automation) are expected to provide the increase in ATM performance that will allow coping with the expected increase in air transport demand. Under TBOs, trajectories are negotiated between the airspace user (an airline, pilot, or operator) and the air navigation service provider (ANSP) using a collaborative decision making (CDM) process. A suitable method for sharing aircraft trajectories is necessary for this negotiation. Sharing a whole trajectory would require a high amount of bandwidth, and the shared trajectory might become invalid if the weather forecast changed. Instead, a description of the trajectory, decoupled from the weather conditions, could be shared, so that the actual trajectory could be computed from this trajectory description. This trajectory description should be easy to process using a computing program —as some of the CDM processes will be automated— but also easy to understand for a human operator —who will be supervising the process and making decisions. This thesis presents a series of formal languages that can be used for this purpose. These languages provide the means to describe aircraft trajectories during all phases of flight, from push back to arrival at the gate. They can also describe trajectories of both manned and unmanned aircraft, including fixedwing and some rotary-wing aircraft (quadrotors). Some of these languages are tightly interrelated and organized in a language hierarchy. One of the key languages in this hierarchy, the aircraft intent description language (AIDL), had already been developed prior to this thesis. This language was derived from the equations of motion of fixed-wing aircraft, and can provide an unambiguous description of fixed-wing aircraft trajectories. A variant of this language, the quadrotor AIDL (QR-AIDL), is developed in this thesis to allow describing a quadrotor aircraft trajectory with the same level of detail. Then, the intent composite description language (ICDL) is built on top of these two languages, providing more flexibility to describe some parts of the trajectory while leaving others unspecified. The ICDL is used to provide generic descriptions of common aircraft manoeuvres, which can be particularized and combined to form complex descriptions of flight. Another language is built on top of the ICDL, the flight intent description language (FIDL). The FIDL specifies high-level requirements on trajectories —including constraints and objectives—, but can use features of the ICDL to provide arbitrary levels of detail in different parts of the flight. The ICDL and FIDL have been developed in collaboration with Boeing Research & Technology Europe (BR&TE). Also, the mission intent description language (MIDL) has been developed to allow describing missions involving multiple aircraft. This language is based on the FIDL and keeps all its expressive power, while it also provides new semantics for describing mission tasks, mission objectives, and constraints involving several aircraft. In ATM, the movement of aircraft while on the airport surface also has to be monitored and managed. Another formal language has been designed for this purpose, denoted surface movement description language (SMDL). This language does not belong to the language hierarchy described above, and it is based on the clearances used in airport surface operations. Means to express uncertainty and mutability of different parts of the trajectory are also provided. Finally, the applications of these languages to trajectory prediction and mission planning are explored in this thesis. The concept of trajectory language processing engine (TLPE) is used in these two applications. A TLPE is an ATM function whose main input and output are expressed in any of the languages in the hierarchy described in this thesis. A modular trajectory predictor is defined as a combination of multiple TLPEs, each of them performing a small subtask. Special attention is given to the TLPE that builds the horizontal, vertical, and configuration profiles of the trajectory. In particular, a novel method for the generation of the vertical profile is presented. The process of planning a mission can also be seen as a TLPE, where the main input is expressed in the MIDL and the output consists of a number of trajectory descriptions —one for each aircraft available in the mission— expressed in the FIDL. A mixed integer linear programming (MILP) formulation for the problem of assigning mission tasks to the available aircraft is provided. In addition, since finding optimal paths between locations is a key problem to mission planning, a novel path finding algorithm is presented. This algorithm can compute near-shortest paths avoiding all obstacles in an urban environment in very short times. The several formal languages described in this thesis can serve as a standard specification to share trajectory information among different actors in ATM. In combination, these languages can describe trajectories with the necessary level of detail for any application, and can be used to increase automation by exploiting this information using decision support tools (DSTs). Their applications to some basic functions of DSTs, such as trajectory prediction, have been analized.