855 resultados para Minor planets, asteroids: individual: (10) Hygiea
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Resonance capture is studied numerically in the three-body problem for arbitrary inclinations. Massless particles are set to drift from outside the 1: 5 resonance with a Jupiter-mass planet thereby encountering the web of the planet's diverse mean motion resonances. Randomly constructed samples explore parameter space for inclinations from 0 to 180 degrees with 5 degrees increments totalling nearly 6 x 10(5) numerical simulations. 30 resonances internal and external to the planet's location are monitored. We find that retrograde resonances are unexpectedly more efficient at capture than prograde resonances and that resonance order is not necessarily a good indicator of capture efficiency at arbitrary inclination. Capture probability drops significantly at moderate sample eccentricity for initial inclinations in the range [10 degrees,110 degrees]. Orbit inversion is possible for initially circular orbits with inclinations in the range [60 degrees,130 degrees]. Capture in the 1:1 co-orbital resonance occurs with great likelihood at large retrograde inclinations. The planet's orbital eccentricity, if larger than 0.1, reduces the capture probabilities through the action of the eccentric Kozai-Lidov mechanism. A capture asymmetry appears between inner and outer resonances as prograde orbits are preferentially trapped in inner resonances. The relative capture efficiency of retrograde resonance suggests that the dynamical lifetimes of Damocloids and Centaurs on retrograde orbits must be significantly larger than those on prograde orbits implying that the recently identified asteroids in retrograde resonance, 2006 BZ8, 2008 SO218, 2009 QY6 and 1999 LE31 may be among the oldest small bodies that wander between the outer giant planets.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Since 2006, the European Near Earth Asteroids Research (EURONEAR) project has been contributing to the research of near-Earth asteroids (NEAs) within a European network. One of the main aims is the amelioration of the orbits of NEAs, and starting in 2014 February we focus on the recovery of one-opposition NEAs using the Isaac Newton Telescope (INT) in La Palma in override mode. Part of this NEA recovery project, since 2014 June EURONEAR serendipitously started to discover and secure the first NEAs from La Palma and using the INT, thanks to the teamwork including amateurs and students who promptly reduce the data, report discoveries and secure new objects recovered with the INT and few other telescopes from the EURONEAR network. Five NEAs were discovered with the INT, including 2014 LU14, 2014 NL52 (one very fast rotator), 2014 OL339 (the fourth known Earth quasi-satellite), 2014 SG143 (a quite large NEA), and 2014 VP. Another very fast moving NEA was discovered but was unfortunately lost due to lack of follow-up time. Additionally, another 14 NEA candidates were identified based on two models, all being rapidly followed-up using the INT and another 11 telescopes within the EURONEAR network. They include one object discovered by Pan-STARRS, two Mars crossers, two Hungarias, one Jupiter trojan, and other few inner main belt asteroids (MBAs). Using the INT and Sierra Nevada 1.5 m for photometry, then the Gran Telescopio de Canarias for spectroscopy, we derived the very rapid rotation of 2014 NL52, then its albedo, magnitude, size, and its spectral class. Based on the total sky coverage in dark conditions, we evaluate the actual survey discovery rate using 2-m class telescopes. One NEA is possible to be discovered randomly within minimum 2.8 deg2 and maximum 5.5 deg2. These findings update our past statistics, being based on double sky coverage and taking into account the recent increase in discovery.
Resumo:
We present initial results from observations and numerical analyses aimed at characterizing the main-belt comet P/2012 T1 (PANSTARRS). Optical monitoring observations were made between 2012 October and 2013 February using the University of Hawaii 2.2 m telescope, the Keck I telescope, the Baade and Clay Magellan telescopes, Faulkes Telescope South, the Perkins Telescope at Lowell Observatory, and the Southern Astrophysical Research Telescope. The object's intrinsic brightness approximately doubles from the time of its discovery in early October until mid-November and then decreases by ~60% between late December and early February, similar to photometric behavior exhibited by several other main-belt comets and unlike that exhibited by disrupted asteroid (596) Scheila. We also used Keck to conduct spectroscopic searches for CN emission as well as absorption at 0.7 μm that could indicate the presence of hydrated minerals, finding an upper limit CN production rate of Q CN <1.5 × 1023 mol s-1, from which we infer a water production rate of Q_H_2O100 Myr and is unlikely to be a recently implanted interloper from the outer solar system, while a search for potential asteroid family associations reveals that it is dynamically linked to the ~155 Myr old Lixiaohua asteroid family. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration, and made possible by the generous financial support of the W. M. Keck Foundation, the Magellan Telescopes located at Las Campanas Observatory, Chile, and the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).
Resumo:
Absolute magnitude (H) of an asteroid is a fundamental parameter describing the size and the apparent brightness of the body. Because of its surface shape, properties and changing illumination, the brightness changes with the geometry and is described by the phase function governed by the slope parameter (G). Although many years have been spent on detailed observations of individual asteroids to provide H and G, vast majority of minor planets have H based on assumed G and due to the input photometry from multiple sources the errors of these values are unknown. We compute H of ~ 180 000 and G of few thousands asteroids observed with the Pan-STARRS PS1 telescope in well defined photometric systems. The mean photometric error is 0.04 mag. Because on average there are only 7 detections per asteroid in our sample, we employed a Monte Carlo (MC) technique to generate clones simulating all possible rotation periods, amplitudes and colors of detected asteroids. Known asteroid colors were taken from the SDSS database. We used debiased spin and amplitude distributions dependent on size, spectral class distributions of asteroids dependent on semi-major axis and starting values of G from previous works. H and G (G12 respectively) were derived by phase functions by Bowell et al. (1989) and Muinonen et al. (2010). We confirmed that there is a positive systematic offset between H based on PS1 asteroids and Minor Planet Center database up to -0.3 mag peaking at 14. Similar offset was first mentioned in the analysis of SDSS asteroids and was believed to be solved by weighting and normalizing magnitudes by observatory codes. MC shows that there is only a negligible difference between Bowell's and Muinonen's solution of H. However, Muinonen's phase function provides smaller errors on H. We also derived G and G12 for thousands of asteroids. For known spectral classes, slope parameters agree with the previous work in general, however, the standard deviation of G in our sample is twice as larger, most likely due to sparse phase curve sampling. In the near future we plan to complete the H and G determination for all PS1 asteroids (500,000) and publish H and G values online. This work was supported by NASA grant No. NNX12AR65G.
Resumo:
Observational studies of our solar system's small-body populations (asteroids and comets) offer insight into the history of our planetary system, as these minor planets represent the left-over building blocks from its formation. The Palomar Transient Factory (PTF) survey began in 2009 as the latest wide-field sky-survey program to be conducted on the 1.2-meter Samuel Oschin telescope at Palomar Observatory. Though its main science program has been the discovery of high-energy extragalactic sources (such as supernovae), during its first five years PTF has collected nearly five million observations of over half a million unique solar system small bodies. This thesis begins to analyze this vast data set to address key population-level science topics, including: the detection rates of rare main-belt comets and small near-Earth asteroids, the spin and shape properties of asteroids as inferred from their lightcurves, the applicability of this visible light data to the interpretation of ultraviolet asteroid observations, and a comparison of the physical properties of main-belt and Jovian Trojan asteroids. Future sky-surveys would benefit from application of the analytical techniques presented herein, which include novel modeling methods and unique applications of machine-learning classification. The PTF asteroid small-body data produced in the course of this thesis work should remain a fertile source of solar system science and discovery for years to come.
Resumo:
Conceptual combination performs a fundamental role in creating the broad range of compound phrases utilised in everyday language. While the systematicity and productivity of language provide a strong argument in favour of assuming compositionality, this very assumption is still regularly questioned in both cognitive science and philosophy. This article provides a novel probabilistic framework for assessing whether the semantics of conceptual combinations are compositional, and so can be considered as a function of the semantics of the constituent concepts, or not. Rather than adjudicating between different grades of compositionality, the framework presented here contributes formal methods for determining a clear dividing line between compositional and non-compositional semantics. Compositionality is equated with a joint probability distribution modelling how the constituent concepts in the combination are interpreted. Marginal selectivity is emphasised as a pivotal probabilistic constraint for the application of the Bell/CH and CHSH systems of inequalities (referred to collectively as Bell-type). Non-compositionality is then equated with either a failure of marginal selectivity, or, in the presence of marginal selectivity, with a violation of Bell-type inequalities. In both non-compositional scenarios, the conceptual combination cannot be modelled using a joint probability distribution with variables corresponding to the interpretation of the individual concepts. The framework is demonstrated by applying it to an empirical scenario of twenty-four non-lexicalised conceptual combinations.
Resumo:
Xanthoria parietina, common foliose lichen, growing in its natural habitat, was analysed for the concentration of five heavy metals (Fe, Cr, Zn, Pb and Cu) from different forest sites of North East of Morocco (Kenitra, Sidi Boughaba, Mkhinza, Ceinture Verte near Temara city, Skhirate, Bouznika and Mohammedia). The quantification was carried out by inductively coupled plasma - atomic emission spectrometry (ICP-AES). Results were highly significant p<0,001. The concentration of metals is correlated with the vehicular activity and urbanization. The total metal concentration is highest at the Kenitra area, followed by Ceinture Verte site near Temara city, which experience heavy traffic throughout the year. Scanning electron microscopy (SEM) of particulate matter on lichen of Xanthoria parietina was assessed as a complementary technique to wet chemical analysis for source apportionment of airborne contaminant. Analysis revealed high level of Cu, Cr, Zn and Pb in samples near roads.
Resumo:
TheWide Angle Search for Planets (WASP) survey currently operates two installations, designated SuperWASP-N and SuperWASP-S, located in the Northern and Southern hemispheres, respectively. These installations are designed to provide high time-resolution photometry for the purpose of detecting transiting extrasolar planets, asteroids, and transient events. Here, we present results from a transit-hunting observing campaign using SuperWASP-N covering a right ascension (RA) range of 06h < RA < 16h. This paper represents the fifth and final in the series of transit candidates released from the 2004 observing season. In total, 729 335 stars from 33 fields were monitored with 130 566 having sufficient precision to be scanned for transit signatures. Using a robust transit detection algorithm and selection criteria, six stars were found to have events consistent with the signature of a transiting extrasolar planet based on the photometry, including the known transiting planet XO-1b. These transit candidates are presented here along with discussion of follow-up observations and the expected number of candidates in relation to the overall observing strategy.
Resumo:
We present results from a search for additional transiting planets in 24 systems already known to contain a transiting planet. We model the transits due to the known planet in each system and subtract these models from light curves obtained with the SuperWASP (Wide Angle Search for Planets) survey instruments. These residual light curves are then searched for evidence of additional periodic transit events. Although we do not find any evidence for additional planets in any of the planetary systems studied, we are able to characterize our ability to find such planets by means of Monte Carlo simulations. Artificially generated transit signals corresponding to planets with a range of sizes and orbital periods were injected into the SuperWASP photometry and the resulting light curves searched for planets. As a result, the detection efficiency as a function of both the radius and orbital period of any second planet is calculated. We determine that there is a good (>50 per cent) chance of detecting additional, Saturn-sized planets in P ~ 10 d orbits around planet-hosting stars that have several seasons of SuperWASP photometry. Additionally, we confirm previous evidence of the rotational stellar variability of WASP-10, and refine the period of rotation. We find that the period of the rotation is 11.91 +/- 0.05 d, and the false alarm probability for this period is extremely low (~10-13).
Resumo:
Analytical models for studying the dynamical behaviour of objects near interior, mean motion resonances are reviewed in the context of the planar, circular, restricted three-body problem. The predicted widths of the resonances are compared with the results of numerical integrations using Poincare surfaces of section with a mass ratio of 10(-3) (similar to the Jupiter-Sun case). It is shown that for very low eccentricities the phase space between the 2:1 and 3:2 resonances is predominantly regular, contrary to simple theoretical predictions based on overlapping resonance. A numerical study of the 'evolution' of the stable equilibrium point of the 3:2 resonance as a function of the Jacobi constant shows how apocentric libration at the 2:1 resonance arises; there is evidence of a similar mechanism being responsible for the centre of the 4:3 resonance evolving towards 3:2 apocentric libration. This effect is due to perturbations from other resonances and demonstrates that resonances cannot be considered in isolation. on theoretical grounds the maximum libration width of first-order resonances should increase as the orbit of the perturbing secondary is approached. However, in reality the width decreases due to the chaotic effect of nearby resonances.
Resumo:
Analytical models for studying the dynamical behaviour of objects near interior, mean motion resonances are reviewed in the context of the planar, circular, restricted threebody problem. The predicted widths of the resonances are compared with the results of numerical integrations using Poincaré surfaces of section with a mass ratio of 10-3 (similar to the Jupiter-Sun case). It is shown that for very low eccentricities the phase space between the 2:1 and 3:2 resonances is predominantly regular, contrary to simple theoretical predictions based on overlapping resonance. A numerical study of the 'evolution' of the stable equilibrium point of the 3:2 resonance as a function of the Jacobi constant shows how apocentric libration at the 2:1 resonance arises; there is evidence of a similar mechanism being responsible for the centre of the 4:3 resonance evolving towards 3:2 apocentric libration. This effect is due to perturbations from other resonances and demonstrates that resonances cannot be considered in isolation. On theoretical grounds the maximum libration width of first-order resonances should increase as the orbit of the perturbing secondary is approached. However, in reality the width decreases due to the chaotic effect of nearby resonances.
Resumo:
ACM Computing Classification System (1998): J.2.
Resumo:
Addition of L-glutamate caused alkalinization of the medium surrounding Asparagus spreng.ri mesophyll cells. This suggests a H+/L-glutmate symport uptake system for L-glutamate. However stoichiometries of H+/L-glutamate symport into Asparagus cells were much higher than those in other plant systems. Medium alkalinization may also result from a metabolic decarboxylation process. Since L-glutmate is decarboxylated to r-amino butyric acid (SABA) in this system, the origin of medium alkalinization was reconsidered. Suspensions of mechanically isolated and photosyntheically competent Asparagus sprengeri mesophyll cells were used to investigate the H+/L-glutamate symport system, SABA production, GABA transport, and the origin of L-glutamate dependent medium alkalinization. The major results obtained are summarized as follows: 1. L-Glutamate and GABA were the second or third most abundant amino acids in these cells. Cellular concentrations of L-glutamate were 1.09 mM and 1.31 mM in the light and dark, respectively. Those of SABA were 1.23 mM and 1.17 mM in the light and dark, respectively. 2. Asparagine was the most abundant amino acid in xylem sap and comprised 54 to 68 1. of the amino acid pool on a molar basis. GABA was the second most abundant amino acid and represented 10 to 11 1. of the amino acid pool. L-Slutamate was a minor component. 3. A 10 minute incubation with 1 mM L-glutamate increased the production of GABA in the medium by 2,743 7. and 2,241 7. in the light and dark, respectively. 4. L-Glutamate entered the cells prior to decarboxylation. 5. There was no evidence for a H+/GABA symport process • 6. GABA was produced by loss of carbon-1 of L-glutamate. 7. The specific activity of newly synthesized labeled GABA suggests that it is not equilibrated with a storage pool of GABA. 8. The mechanism of GABA efflux appears to be a passive process. 9. The evidence indicates that the origin of L-glutamate dependent medium alkalinization is a H+/L-glutamate symport not an extracellular decarboxylation. The possible role of GABA production in regulating cytoplasmic pH and L-glutamate levels during rapid electrogenic H+/L-glutamate symport is discussed.