L-Glutamate uptake, decarboxylation to -aminobutyric acid and GABA efflux in isolated Asparagus sprengeri mesophyll cells
Contribuinte(s) |
Department of Biological Sciences |
---|---|
Data(s) |
09/07/2009
09/07/2009
09/07/1989
|
Resumo |
Addition of L-glutamate caused alkalinization of the medium surrounding Asparagus spreng.ri mesophyll cells. This suggests a H+/L-glutmate symport uptake system for L-glutamate. However stoichiometries of H+/L-glutamate symport into Asparagus cells were much higher than those in other plant systems. Medium alkalinization may also result from a metabolic decarboxylation process. Since L-glutmate is decarboxylated to r-amino butyric acid (SABA) in this system, the origin of medium alkalinization was reconsidered. Suspensions of mechanically isolated and photosyntheically competent Asparagus sprengeri mesophyll cells were used to investigate the H+/L-glutamate symport system, SABA production, GABA transport, and the origin of L-glutamate dependent medium alkalinization. The major results obtained are summarized as follows: 1. L-Glutamate and GABA were the second or third most abundant amino acids in these cells. Cellular concentrations of L-glutamate were 1.09 mM and 1.31 mM in the light and dark, respectively. Those of SABA were 1.23 mM and 1.17 mM in the light and dark, respectively. 2. Asparagine was the most abundant amino acid in xylem sap and comprised 54 to 68 1. of the amino acid pool on a molar basis. GABA was the second most abundant amino acid and represented 10 to 11 1. of the amino acid pool. L-Slutamate was a minor component. 3. A 10 minute incubation with 1 mM L-glutamate increased the production of GABA in the medium by 2,743 7. and 2,241 7. in the light and dark, respectively. 4. L-Glutamate entered the cells prior to decarboxylation. 5. There was no evidence for a H+/GABA symport process • 6. GABA was produced by loss of carbon-1 of L-glutamate. 7. The specific activity of newly synthesized labeled GABA suggests that it is not equilibrated with a storage pool of GABA. 8. The mechanism of GABA efflux appears to be a passive process. 9. The evidence indicates that the origin of L-glutamate dependent medium alkalinization is a H+/L-glutamate symport not an extracellular decarboxylation. The possible role of GABA production in regulating cytoplasmic pH and L-glutamate levels during rapid electrogenic H+/L-glutamate symport is discussed. |
Identificador | |
Idioma(s) |
eng |
Publicador |
Brock University |
Palavras-Chave | #Asparagus sprengeri. #Cells. #Plant cells and tissues. #Glutamate decarboxylase. #Decarboxylases. #Aminobutyric acid. #GABA. |
Tipo |
Electronic Thesis or Dissertation |