930 resultados para Marine sponge bacterium Salinispora
Resumo:
Five new chlorinated peptides (5)-(9) have been isolated from a Dysidea sp. and identified by two-dimensional NMR spectroscopy. The absolute stereochemistry of the metabolites was deduced by chemical correlation with S-(-)-4,4,4-trichloro-3-methylbutanoic acid (10) and with an alcohol (11). (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Six bromotyrosine-derived compounds were isolated from the Caribbean marine sponge Aiolochroia crassa: 3-bromo-5-hydroxy-O-methyltyrosine (1), 3-bromo-N,N,N-trimethyltyrosinium (2), 3-bromo-N,N,N,O-tetramethyltyrosinium (3), 3,5-dibromo-N,N,N-trimethyltyrosinium (4), 3,5-dibromo-N,N,N,O-tetramethyltyrosinium (5), and aeroplysinin-1 (6). Structural determination was performed using NMR, MS and comparison with literature data. All isolated compounds were screened for their in vitro activity against Leishmania panamensis, Plasmodium falciparum and Trypanosoma cruzi. Compound 4 showed selective antiparasitic activity against Leishmania and Plasmodium parasites. This is the first report of compounds 1, 4 and 5 in the sponge A. crassa and the first biological activity reports for compounds 2-4. This work shows that bromotyrosines are potential antiparasitic agents.
Resumo:
Dibromotyrosine-derived metabolites are of common occurrence within marine sponges belonging to the order Verongida. However, previous chemical analysis of crude extracts obtained from samples of the verongid sponge Aplysina fulva collected in Brazil did not provide any dibromotyrosine-derived compounds. In this investigation, five samples of A. fulva from five different locations along the Brazilian coastline and one sample from a temperate reef in the South Atlantic Bight (SAB) (Georgia, USA) were investigated for the presence of bromotyrosine-derived compounds. All six samples collected yielded dibromotyrosine-derived compounds, including a new derivative, named aplysinafulvin, which has been identified by. analysis of spectroscopic data. These results confirm previous assumptions that dibromotyrosine-derived metabolites can be considered as chemotaxonomic markers of verongid sponges. The isolation of aplysinafulvin provides additional support for a biogenetic pathway involving an arene oxide intermediate in the biosynthesis of Verongida metabolites. It cannot yet be established if the chemical variability observed among the six samples of A.fulva collected in Brazil and the SAB is the result of different environmental factors, distinct chemical extraction and isolation protocols, or a consequence of hidden genetic diversity within the postulated morphological plasticity of this species. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Investigation of the bioactive crude extract from the sponge Plakortis angulospiculatus from Brazil led to the isolation of plakortenone (1) as a new polyketide, along with five known polyketides (2-6) previously isolated from other Plakortis sponges. The known polyketides were tested in antileishmanial, antitrypanosomal, antineuroinflammatory, and cytotoxicity assays. The results show that plakortide P (3) is a potent antiparasitic compound, against both Leishmania chagasi and Trypanosona cruzi, and exhibited antineuroinflammatory activity. The known polyketides 2-6 were tested for cytotoxicity against four human cancer cell lines, but displayed only moderate cytotoxic activity.
Resumo:
Three new nitrogen-containing terpenes related to pyrodysinoic acid (1) have been isolated from the sponge Dysidea robusta collected in Brazil. Isopyrodysinoic acid (2), 13-hydroxyisopyrodysinoic acid (3), and pyrodysinoic acid B (4) were obtained from the crude extract of D. robusta and identified by analysis of spectroscopic data. Pyrodysinoic acid B (4) is the first furodysin or furodysinin sesquiterpene derivative with a trans junction between the two six-membered rings of the 1,2,3,4,4a,7,8,8a-octahydro-1,1,6-trimethylnaphthalene moiety.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Dragmacidon reticulatum is a marine sponge of wide occurrence in the Eastern and Western Atlantic. Little is known about D. reticulatum fungal diversity. Filamentous fungi recovered from D. reticulatum were assessed in the present study using a polyphasic taxonomic approach, including classical morphology, molecular biology and MALDI-TOF ICMS. Ninety-eight fungal strains were isolated from two D. reticulatum samples by using six different culture media, which were identified up to the genus level. Sixty-four distinct fungal ribotypes were obtained, distributed among twenty-four different genera belonging to the Ascomycota and Zygomycota. Representatives of Penicillium and Trichoderma were the most diverse and abundant fungi isolated. Amongst Penicillium spp. three isolates belonged to the same ribotype can be considered as a putative new species. Data derived from the present study highlight the importance of using a polyphasic approach to get an accurate identification in order to structure a reliable culture collection. © 2012 Springer-Verlag Berlin Heidelberg.
Molecular diversity of fungal and bacterial communities in the marine sponge Dragmacidon reticulatum
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Marine sponges of the order Verongida are a rich source of biologically active bromotyrosine-derived secondary metabolites. However, none of these compounds are known to display anti-inflammatory activity. In the present investigation, we report the anti-inflammatory effects of 11-oxoaerothionin isolated from the Verongida sponge Aplysina fistularis. When RAW264.7 cells and primary macrophages were preincubated with 11-oxoaerothionin and stimulated with LPS (lipopolysaccharide), a concentration-dependent inhibition of iNOS (inducible nitric oxide synthase) protein and NO2- (Nitrite) production were observed. The same effect was observed when proinflammatory cytokines and PGE(2) (Prostaglandin E2) production was evaluated. In summary, we demonstrated that in the presence of LPS, 11-oxoaerothionin suppresses NO2 and iNOS expression as well as inflammatory cytokines and PGE(2).
Resumo:
The endemic marine sponge Arenosclera brasiliensis (Porifera, Demospongiae, Haplosclerida) is a known source of secondary metabolites such as arenosclerins A-C. In the present study, we established the composition of the A. brasiliensis microbiome and the metabolic pathways associated with this community. We used 454 shotgun pyrosequencing to generate approximately 640,000 high-quality sponge-derived sequences (similar to 150 Mb). Clustering analysis including sponge, seawater and twenty-three other metagenomes derived from marine animal microbiomes shows that A. brasiliensis contains a specific microbiome. Fourteen bacterial phyla (including Proteobacteria, Cyanobacteria, Actinobacteria, Bacteroidetes, Firmicutes and Cloroflexi) were consistently found in the A. brasiliensis metagenomes. The A. brasiliensis microbiome is enriched for Betaproteobacteria (e.g., Burkholderia) and Gammaproteobacteria (e.g., Pseudomonas and Alteromonas) compared with the surrounding planktonic microbial communities. Functional analysis based on Rapid Annotation using Subsystem Technology (RAST) indicated that the A. brasiliensis microbiome is enriched for sequences associated with membrane transport and one-carbon metabolism. In addition, there was an overrepresentation of sequences associated with aerobic and anaerobic metabolism as well as the synthesis and degradation of secondary metabolites. This study represents the first analysis of sponge-associated microbial communities via shotgun pyrosequencing, a strategy commonly applied in similar analyses in other marine invertebrate hosts, such as corals and algae. We demonstrate that A. brasiliensis has a unique microbiome that is distinct from that of the surrounding planktonic microbes and from other marine organisms, indicating a species-specific microbiome.
Resumo:
Archaea, one of the three major domains of extant life, was thought to comprise predominantly microorganisms that inhabit extreme environments, inhospitable to most Eucarya and Bacteria. However, molecular phylogenetic surveys of native microbial assemblages are beginning to indicate that the evolutionary and physiological diversity of Archaea is far greater than previously supposed. We report here the discovery and preliminary characterization of a marine archaeon that inhabits the tissues of a temperate water sponge. The association was specific, with a single crenarchaeal phylotype inhabiting a single sponge host species. To our knowledge, this partnership represents the first described symbiosis involving Crenarchaeota. The symbiotic archaeon grows well at temperatures of 10 degrees C, over 60 degrees C below the growth temperature optimum of any cultivated species of Crenarchaeota. Archaea have been generally characterized as microorganisms that inhabit relatively circumscribed niches, largely high-temperature anaerobic environments. In contrast, data from molecular phylogenetic surveys, including this report, suggest that some crenarchaeotes have diversified considerably and are found in a wide variety of lifestyles and habitats. We present here the identification and initial description of Cenarchaeum symbiosum gen. nov., sp. nov., a symbiotic archaeon closely related to other nonthermophilic crenarchaeotes that inhabit diverse marine and terrestrial environments.
Resumo:
The biosynthetic origins of the dichloroimine group in the stylotellanes A and B 1,2 have been investigated by incorporation of [C-14]-labeled farnesyl isocyanide 7 and farnesyl isothiocyanate 3 into the sponge Stylotella aurantium. (C) 2002 Elsevier Science Ltd. All rights reserled.
Resumo:
The biosynthetic origin of the dichloroimine functional group in the marine sponge terpene metabolites stylotellanes A ( 3) and B ( 4) was probed by the use of [C-14]-labelled precursor experiments. Incubation of the sponge Stylotella aurantium with [C-14]-labelled cyanide or thiocyanate resulted in radioactive terpenes in which the radiolabel was shown by hydrolytic chemical degradation to be associated specifically with the dichloroimine carbons. Additionally, label from both precursors was incorporated into farnesyl isothiocyanate ( 2). A time course experiment with [ 14C]cyanide revealed that the specific activity for farnesyl isothiocyanate decreases over time, but increases for stylotellane B ( 4), consistent with the rapid formation of farnesyl isothiocyanate ( 2) from inorganic precursors followed by a slower conversion to stylotellane B ( 4). The advanced precursors farnesyl isothiocyanate ( 2) and farnesyl isocyanide ( 5) were supplied to S. aurantium, and shown to be incorporated efficiently into stylotellane A ( 3) and B ( 4). Feeding of [C-14]-farnesyl isothiocyanate ( 2) resulted in a higher incorporation of label than with [C-14]-farnesyl isocyanide ( 5). Farnesyl isocyanide was incorporated into farnesyl isothiocyanate in agreement with labelling studies in other marine sponges. Both farnesyl isocyanide and isothiocyanate were further incorporated into axinyssamide A ( 11) as well as the cyclized dichloroimines (12)-(14), ( 16) that represent more advanced biosynthetic products of this pathway. These results identify the likely biosynthetic pathway leading to the major metabolites of S. aurantium.