996 resultados para Mínimos quadrados parciais
Resumo:
No contexto de um mercado tão competitivo, ter equipes bem preparadas e alocadas adequadamente é fundamental para a sobrevivência das empresas. O presente estudo objetiva identificar o reflexo na satisfação dos clientes e nos resultados das empresas, a partir do conhecimento das pessoas que trabalham na linha de frente dessas empresas, aqueles profissionais que exercem um papel importante de negociação, identificando o que eles valorizam subjetivamente em uma negociação. Por meio da ferramenta SVI (Subjective Value Inventory), desenvolvida por Curhan et al (2006), a partir das dimensões de autoimagem independente e interdependente, busca-se identificar os valores subjetivos dos negociadores de um banco de varejo brasileiro, responsáveis por parte significativa das negociações e dos resultados da empresa, relativamente aos sentimentos sobre si mesmos (Self), aos resultados instrumentais, e ao processo e relacionamento (Rapport), utilizando a confiança interpessoal como moderadora nessa relação. Após identificados os valores subjetivos desses negociadores em negociação, relacionar os resultados encontrados com a satisfação dos clientes. Para isso, foi realizada uma pesquisa quantitativa, com a aplicação de um questionário fechado e estruturado a 532 negociadores desse banco que atuam nos estados de Santa Catarina, Rio de Janeiro e Maranhão, responsáveis pelo relacionamento, prospecção e realização de negócios com os clientes da instituição, nos segmentos pessoa física, micro e pequenas empresas e governo. Os dados foram analisados a partir de técnicas estatísticas, utilizando-se o método dos Mínimos Quadrados Parciais. Observou-se que mais de 40% da satisfação de cliente é explicada pelos valores subjetivos dos negociadores. O estudo apontou como resultados, dentre outros, que os gerentes de negócios com autoimagem independente valorizam o Self e os resultados instrumentais em uma negociação, e que a confiança interpessoal cognitiva modera negativamente essa relação. Ainda, que aqueles gerentes de negócios com autoimagem interdependente, valorizam o Rapport em uma negociação e que essa valorização está positivamente relacionada com a satisfação dos clientes.
Resumo:
A literatura em franchising tem virtualmente ignorado o papel de aspectos psicologicos nos resultados interorganizacionais das empresas, a despeito de sua influencia nos resultados das organizações e da qualidade de relacionamento. Este estudo, portanto, tem por objetivo analisar a influência da personalidade e do potencial empreendedor na qualidade de relacionamento e desempenho financeiro na relação franqueador-franqueado, ao longo do tempo, sob a perspectiva dos franqueados. Este estudo analisa também o papel do tempo de relacionamento sobre a qualidade de relacionamento e o desempenho financeiro. Foi utilizado neste estudo um questionário de auto-preenchimento, enviado por e-mail, com o objetivo de recolher dados de uma amostra de 342 franqueados de 3 redes de franquias. A personalidade foi mensurada por meio dos “Cinco Grandes” traços de personalidade (escalas IPIP-B5): extroversão, agradabilidade, consciencia, estabilidade emocional e imaginação. O potencial empreendedor foi mensurado por meio do índice CEI (Carland Entrepreneurship Index). A qualidade do relacionamento foi estruturada como um constructo de segunda ordem, composto por 23 itens (incorporando confiança, comprometimento e satisfação com o relacionamento), e o desempenho financeiro foi representado por meio de uma escala de mensuração de crescimento de vendas e de rentabilidade. O tempo de relacionamento foi medido por meio dos meses de relacionamento entre franqueado e franqueador. As hipoteses foram testadas por meio de modelagem por equações estruturais, com a utilização do método de mínimos quadrados parciais (PLS), análise de regressão e análise de médias. Três das cinco dimensões da personalidade apresentaram o efeito previsto sobre as variáveis qualidade do relacionamento – agradabilidade (positivamente), estabilidade emocional (positivamente), e imaginação (positivamente). O desempenho financeiro foi influenciado, como previsto por consciência (positivamente), estabilidade emocional (positivamente), e imaginação (positivamente). Como esperado, a qualidade do relacionamento apresentou efeito positivo e significativo em relação ao desempenho financeiro. O potencial empreendedor apresentou o efeito positivo previsto apenas sobre desempenho. O tempo de relacionamento teve o efeito positivo esperado sobre o relacionamento franqueador-franqueado, em relação à qualidade do relacionamento e o desempenho financeiro, mas as diferenças entre as fases de relacionamento propostas foram apenas parcialmente confirmadas, uma vez que em somente duas fases (rotina e estabilização) a análise de médias mostrou diferenças significativas. Os resultados indicam que a personalidade influencia a qualidade de relacionamento e o desempenho, mas a meneira pela qual isso ocorre é diferente no contexto brasileiro, onde esta pesquisa foi realizada, dos achados da pesquisa conduzida na Austrália, sugerindo que fatores como cultura e estabilidade de mercado podem ter influencia sobre a relação entre traços de personalidade e qualidade de relacionamento, e traços de personalidade e desempenho financeiro. O potencial empreendedor parece influenciar positivamente o desempenho do franqueado, mas a sua influência não foi significativa em relação à qualidade do relacionamento. Os resultados também indicam a importância do tempo no desenvolvimento da qualidade de relacionamento e desempenho. Além disso, os relacionamentos de longo prazo estão relacionados a melhores avaliações de qualidade de relacionamento e desempenho financeiros por parte dos franqueados. As limitações do trabalho e sugestões para estudos futuros também são discutidos.
Resumo:
Com este trabalho pretendeu-se estabelecer o perfil metabolómico volátil de amostras de fluidos biológicos, nomeadamente saliva e urina, de pacientes com cancro da mama e do pulmão e de indivíduos saudáveis (grupo controlo), utilizando a Microextração em Fase Sólida em modo headspace (HS-SPME) seguida de Cromatografia Gasosa acoplada à Espectrometria de Massa (GC-MS). Efetuou-se a comparação entre os perfis voláteis dos grupos estudados com o objetivo de identificar metabolitos que possam ser considerados como potenciais biomarcadores dos tipos de cancro em estudo. De modo a otimizar a metodologia extrativa, HS-SPME, foram avaliados os diferentes parâmetros experimentais com influência no processo extrativo. Os melhores resultados foram obtidos com a fibra CAR/PDMS, usando um volume de 2 mL de saliva acidificada, 10% NaCl (m/v) e 45 minutos de extração a uma temperatura de 37±1°C. Para a urina foi utilizada a mesma fibra, 4 mL de urina acidificada, 20% NaCl (m/v) e 60 minutos de extração a 50±1°C. Nas amostras de saliva e urina, foram identificados 243 e 500 metabolitos voláteis respetivamente, sendo estes pertencentes a diferentes famílias químicas. Posteriormente, utilizou-se a análise discriminante por mínimos quadrados parciais (PLS-DA) que permitiu observar uma boa separação entre os grupos controlo e oncológicos. Nas amostras salivares o grupo de pacientes com cancro da mama foi maioritariamente caracterizado pelo metabolito ácido benzeno carboxílico e o grupo de pacientes com cancro do pulmão pelo ácido hexanóico. Na urina o grupo de pacientes com cancro da mama foi maioritariamente caracterizado pelo metabolito 1-[2-(Isobutiriloxi)-1-metiletil]-2,2-dimetilpropil 2-metilpropanoato e o grupo de pacientes com cancro do pulmão pelo o-cimeno. Além da metodologia PLS-DA foi realizada a validação cruzada de monte carlo (MCCV) tendo-se obtido uma elevada taxa de classificação, sensibilidade e especificidade o que demonstra a robustez dos dados obtidos.
Resumo:
The study aims to identify the factors that influence the behavior intention to adopt an academic Information System (SIE), in an environment of mandatory use, applied in the procurement process at the Federal University of Pará (UFPA). For this, it was used a model of innovation adoption and technology acceptance (TAM), focused in attitudes and intentions regarding the behavior intention. The research was conducted a quantitative survey, through survey in a sample of 96 administrative staff of the researched institution. For data analysis, it was used structural equation modeling (SEM), using the partial least squares method (Partial Least Square PLS-PM). As to results, the constructs attitude and subjective norms were confirmed as strong predictors of behavioral intention in a pre-adoption stage. Despite the use of SIE is required, the perceived voluntariness also predicts the behavior intention. Regarding attitude, classical variables of TAM, like as ease of use and perceived usefulness, appear as the main influence of attitude towards the system. It is hoped that the results of this study may provide subsidies for more efficient management of the process of implementing systems and information technologies, particularly in public universities
Resumo:
This study aimed to examine how students perceives the factors that may influence them to attend a training course offered in the distance virtual learning environment (VLE) of the National School of Public Administration (ENAP). Thus, as theoretical basis it was used the Unified Theory of Acceptance and Use of Technology (UTAUT), the result of an integration of eight previous models which aimed to explain the same phenomenon (acceptance/use of information technology). The research approach was a quantitative and qualitative. To achieve the study objectives were made five semi-structured interviews and an online questionnaire (websurvey) in a valid sample of 101 public employees scattered throughout the country. The technique used to the analysis of quantitative data was the structural equation modeling (SEM), by the method of Partial Least Square Path Modeling (PLS-PM). To qualitative data was the thematic content analysis. Among the results, it was found that, in the context of public service, the degree whose the individual believes that the use of an AVA will help its performance at work (performance expectancy) is a factor to its intended use and also influence its use. Among the results, it was found that the belief which the public employee has in the use of a VLE as a way to improve the performance of his work (performance expectation) was determinant for its intended use that, in turn, influenced their use. It was confirmed that, under the voluntary use of technology, the general opinion of the student s social circle (social influence) has no effect on their intention to use the VLE. The effort expectancy and facilitating conditions were not directly related to the intended use and use, respectively. However, emerged from the students speeches that the opinions of their coworkers, the ease of manipulate the VLE, the flexibility of time and place of the distance learning program and the presence of a tutor are important to their intentions to do a distance learning program. With the results, it is expected that the managers of the distance learning program of ENAP turn their efforts to reduce the impact of the causes of non-use by those unwilling to adopt voluntarily the e-learning, and enhance the potentialities of distance learning for those who are already users
Resumo:
In this work we used chemometric tools to classify and quantify the protein content in samples of milk powder. We applied the NIR diffuse reflectance spectroscopy combined with multivariate techniques. First, we carried out an exploratory method of samples by principal component analysis (PCA), then the classification of independent modeling of class analogy (SIMCA). Thus it became possible to classify the samples that were grouped by similarities in their composition. Finally, the techniques of partial least squares regression (PLS) and principal components regression (PCR) allowed the quantification of protein content in samples of milk powder, compared with the Kjeldahl reference method. A total of 53 samples of milk powder sold in the metropolitan areas of Natal, Salvador and Rio de Janeiro were acquired for analysis, in which after pre-treatment data, there were four models, which were employed for classification and quantification of samples. The methods employed after being assessed and validated showed good performance, good accuracy and reliability of the results, showing that the NIR technique can be a non invasive technique, since it produces no waste and saves time in analyzing the samples
Resumo:
In this work calibration models were constructed to determine the content of total lipids and moisture in powdered milk samples. For this, used the near-infrared spectroscopy by diffuse reflectance, combined with multivariate calibration. Initially, the spectral data were submitted to correction of multiplicative light scattering (MSC) and Savitzsky-Golay smoothing. Then, the samples were divided into subgroups by application of hierarchical clustering analysis of the classes (HCA) and Ward Linkage criterion. Thus, it became possible to build regression models by partial least squares (PLS) that allowed the calibration and prediction of the content total lipid and moisture, based on the values obtained by the reference methods of Soxhlet and 105 ° C, respectively . Therefore, conclude that the NIR had a good performance for the quantification of samples of powdered milk, mainly by minimizing the analysis time, not destruction of the samples and not waste. Prediction models for determination of total lipids correlated (R) of 0.9955, RMSEP of 0.8952, therefore the average error between the Soxhlet and NIR was ± 0.70%, while the model prediction to content moisture correlated (R) of 0.9184, RMSEP, 0.3778 and error of ± 0.76%
Resumo:
This work is combined with the potential of the technique of near infrared spectroscopy - NIR and chemometrics order to determine the content of diclofenac tablets, without destruction of the sample, to which was used as the reference method, ultraviolet spectroscopy, which is one of the official methods. In the construction of multivariate calibration models has been studied several types of pre-processing of NIR spectral data, such as scatter correction, first derivative. The regression method used in the construction of calibration models is the PLS (partial least squares) using NIR spectroscopic data of a set of 90 tablets were divided into two sets (calibration and prediction). 54 were used in the calibration samples and the prediction was used 36, since the calibration method used was crossvalidation method (full cross-validation) that eliminates the need for a validation set. The evaluation of the models was done by observing the values of correlation coefficient R 2 and RMSEC mean square error (calibration error) and RMSEP (forecast error). As the forecast values estimated for the remaining 36 samples, which the results were consistent with the values obtained by UV spectroscopy
Resumo:
In this work, the quantitative analysis of glucose, triglycerides and cholesterol (total and HDL) in both rat and human blood plasma was performed without any kind of pretreatment of samples, by using near infrared spectroscopy (NIR) combined with multivariate methods. For this purpose, different techniques and algorithms used to pre-process data, to select variables and to build multivariate regression models were compared between each other, such as partial least squares regression (PLS), non linear regression by artificial neural networks, interval partial least squares regression (iPLS), genetic algorithm (GA), successive projections algorithm (SPA), amongst others. Related to the determinations of rat blood plasma samples, the variables selection algorithms showed satisfactory results both for the correlation coefficients (R²) and for the values of root mean square error of prediction (RMSEP) for the three analytes, especially for triglycerides and cholesterol-HDL. The RMSEP values for glucose, triglycerides and cholesterol-HDL obtained through the best PLS model were 6.08, 16.07 e 2.03 mg dL-1, respectively. In the other case, for the determinations in human blood plasma, the predictions obtained by the PLS models provided unsatisfactory results with non linear tendency and presence of bias. Then, the ANN regression was applied as an alternative to PLS, considering its ability of modeling data from non linear systems. The root mean square error of monitoring (RMSEM) for glucose, triglycerides and total cholesterol, for the best ANN models, were 13.20, 10.31 e 12.35 mg dL-1, respectively. Statistical tests (F and t) suggest that NIR spectroscopy combined with multivariate regression methods (PLS and ANN) are capable to quantify the analytes (glucose, triglycerides and cholesterol) even when they are present in highly complex biological fluids, such as blood plasma
Resumo:
The aim of this study was to evaluate the potential of near-infrared reflectance spectroscopy (NIRS) as a rapid and non-destructive method to determine the soluble solid content (SSC), pH and titratable acidity of intact plums. Samples of plum with a total solids content ranging from 5.7 to 15%, pH from 2.72 to 3.84 and titratable acidity from 0.88 a 3.6% were collected from supermarkets in Natal-Brazil, and NIR spectra were acquired in the 714 2500 nm range. A comparison of several multivariate calibration techniques with respect to several pre-processing data and variable selection algorithms, such as interval Partial Least Squares (iPLS), genetic algorithm (GA), successive projections algorithm (SPA) and ordered predictors selection (OPS), was performed. Validation models for SSC, pH and titratable acidity had a coefficient of correlation (R) of 0.95 0.90 and 0.80, as well as a root mean square error of prediction (RMSEP) of 0.45ºBrix, 0.07 and 0.40%, respectively. From these results, it can be concluded that NIR spectroscopy can be used as a non-destructive alternative for measuring the SSC, pH and titratable acidity in plums
Resumo:
Aiming to consumer s safety the presence of pathogenic contaminants in foods must be monitored because they are responsible for foodborne outbreaks that depending on the level of contamination can ultimately cause the death of those who consume them. In industry is necessary that this identification be fast and profitable. This study shows the utility and application of near-infrared (NIR) transflectance spectroscopy as an alternative method for the identification and classification of Escherichia coli and Salmonella Enteritidis in commercial fruit pulp (pineapple). Principal Component Analysis (PCA), Independent Modeling of Class Analogy (SIMCA) and Discriminant Analysis Partial Least Squares (PLS-DA) were used in the analysis. It was not possible to obtain total separation between samples using PCA and SIMCA. The PLS-DA showed good performance in prediction capacity reaching 87.5% for E. coli and 88.3% for S. Enteritides, respectively. The best models were obtained for the PLS-DA with second derivative spectra treated with a sensitivity and specificity of 0.87 and 0.83, respectively. These results suggest that the NIR spectroscopy and PLS-DA can be used to discriminate and detect bacteria in the fruit pulp
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The objective of this study was to evaluate the potential of near infrared spectroscopy (NIRS) associated with multivariate statistics to distinguish coal produced from wood of planted and native forests. Timber forest species from the C errado (Cedrela sp., Aspidosperma sp., Jacaranda sp. and unknown species) and Eucalyptus clones from forestry companies (Vallourec and Cenibra) were carbonized in the final temperatures of 300, 500 and 700°C. In each heat treatment were carbonized 15 specimens of each vegetal material totaling 270 samples (3 treatments x 15 reps x 6 materials) produced in 18 carbonization (3 treatments x 6 materials). The acquisition of the spectra of coals in the near infrared using a spectrometer was performed. Principal Component Analysis (PCA) and Partial Least Squares Regression (PLS-R) were carried out in the spectra. NIR Spectroscopy associated with PCA was not able to differentiate charcoals produced from native and planted woods when utilizing all carbonized samples at different temperatures in the same analysis; The PCA of all charcoals was able to distinguish the samples depending on temperature in which they were carbonized. However, the separation of native and planted charcoal was possible when the samples were analyzed separately by final temperature. The prediction of native or planted classes by PLS-R presented better performance for samples carbonized at 300°C followed by those at 500°C, 700°C and for all together.
Resumo:
Pós-graduação em Química - IQ
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)