155 resultados para Longíssimus Dorsi
Resumo:
Postnatal myofibre characteristics and muscle mass are largely determined during fetal development and may be significantly affected by epigenetic parent-of-origin effects. However, data on such effects in prenatal muscle development that could help understand unexplained variation in postnatal muscle traits are lacking. In a bovine model we studied effects of distinct maternal and paternal genomes, fetal sex, and non-genetic maternal effects on fetal myofibre characteristics and muscle mass. Data from 73 fetuses (Day153, 54% term) of four genetic groups with purebred and reciprocal cross Angus and Brahman genetics were analyzed using general linear models. Parental genomes explained the greatest proportion of variation in myofibre size of Musculus semitendinosus (80-96%) and in absolute and relative weights of M. supraspinatus, M. longissimus dorsi, M. quadriceps femoris and M. semimembranosus (82-89% and 56-93%, respectively). Paternal genome in interaction with maternal genome (P<0.05) explained most genetic variation in cross sectional area (CSA) of fast myotubes (68%), while maternal genome alone explained most genetic variation in CSA of fast myofibres (93%, P<0.01). Furthermore, maternal genome independently (M. semimembranosus, 88%, P<0.0001) or in combination (M. supraspinatus, 82%; M. longissimus dorsi, 93%; M. quadriceps femoris, 86%) with nested maternal weight effect (5-6%, P<0.05), was the predominant source of variation for absolute muscle weights. Effects of paternal genome on muscle mass decreased from thoracic to pelvic limb and accounted for all (M. supraspinatus, 97%, P<0.0001) or most (M. longissimus dorsi, 69%, P<0.0001; M. quadriceps femoris, 54%, P<0.001) genetic variation in relative weights. An interaction between maternal and paternal genomes (P<0.01) and effects of maternal weight (P<0.05) on expression of H19, a master regulator of an imprinted gene network, and negative correlations between H19 expression and fetal muscle mass (P<0.001), suggested imprinted genes and miRNA interference as mechanisms for differential effects of maternal and paternal genomes on fetal muscle.
Resumo:
The most common connective tissue research in meat science has been conducted on the properties of intramuscular connective tissue (IMCT) in connection with eating quality of meat. From the chemical and physical properties of meat, researchers have concluded that meat from animals younger than physiological maturity is the most tender. In pork and poultry, different challenges have been raised: the structure of cooked meat has weakened. In extreme cases raw porcine M. semimembranosus (SM) and in most turkey M. pectoralis superficialis (PS) can be peeled off in strips along the perimysium which surrounds the muscle fibre bundles (destructured meat), and when cooked, the slices disintegrate. Raw chicken meat is generally very soft and when cooked, it can even be mushy. The overall aim of this thesis was to study the thermal properties of IMCT in porcine SM in order to see if these properties were in association with destructured meat in pork and to characterise IMCT in poultry PS. First a 'baseline' study to characterise the thermal stability of IMCT in light coloured (SM and M. longissimus dorsi in pigs and PS in poultry) and dark coloured (M. infraspinatus in pigs and a combination of M. quadriceps femoris and M. iliotibialis lateralis in poultry) muscles was necessary. Thereafter, it was investigated whether the properties of muscle fibres differed in destructured and normal porcine muscles. Collagen content and also solubility of dark coloured muscles were higher than in light coloured muscles in pork and poultry. Collagen solubility was especially high in chicken muscles, approx. 30 %, in comparison to porcine and turkey muscles. However, collagen content and solubility were similar in destructured and normal porcine SM muscles. Thermal shrinkage of IMCT occurred at approximately 65 °C in pork and poultry. It occurred at lower temperature in light coloured muscles than in dark coloured muscles, although the difference was not always significant. The onset and peak temperatures of thermal shrinkage of IMCT were lower in destructured than in normal SM muscles, when the IMCT from SM muscles exhibiting ten lowest and ten highest ultimate pH values were investigated (onset: 59.4 °C vs. 60.7 °C, peak: 64.9 °C vs. 65.7 °C). As the destructured meat was paler than normal meat, the PSE (pale, soft, exudative) phenomenon could not be ruled out. The muscle fibre cross sectional area (CSA), the number of capillaries per muscle fibre CSA and per fibre and sarcomere length were similar in destructured and normal SM muscles. Drip loss was clearly higher in destructured than in normal SM muscles. In conclusion, collagen content and solubility and thermal shrinkage temperature vary between porcine and poultry muscles. One feature in the IMCT could not be directly associated with weakening of the meat structure. Poultry breast meat is very homogenous within the species.
Resumo:
Muscle glycogen exists in two forms: low molecular weight pro-glycogen and high molecular weight macro-glycogen. The degradation of glycogen to glucose 1 phosphate and free glucose is catalysed by glycogen phosphorylase together with glycogen debranching enzyme (GDE). The process in which glycogen is broken down via anaerobic pathways to lactate, results in the acidification of the muscles and has a great influence on meat quality. Thus, the overall aim of this thesis was to characterise the post mortem action of GDE in muscles of meat production animals (pigs, cattle and chickens). Interest was focused on the differences in GDE activity between fast twitch glycolytic muscles and slow twitch oxidative muscles. The effects of pH, temperature, RN genotype (PRKAG3 gene), and of time post mortem on GDE activity were also investigated. This thesis showed that there are differences in GDE activity between animal species and between different muscles of an animal. It was shown that in pigs and cattle, higher GDE activity and phosphorylase activity exists in the fast twitch glycolytic muscles than in slow twitch oxidative muscles of the same animal. Thus, the high activity of these enzymes enables a faster rate of glycogenolysis in glycolytic M. longissimus dorsi compared to oxidative M. masseter. In chicken muscles, the GDE activity was low compared to pig or cattle muscles. Furthermore, the GDE activity in the glycolytic M. pectoralis superficialis was lower than in more oxidative M. quadriceps femoris despite the high phosphorylase activity in the former. The relative ratios between phosphorylase and GDE activity were higher in fast twitch glycolytic muscles than in slow twitch oxidative muscles of all studied animals. This suggests that the relatively low GDE activity compared to the phosphorylase activity in fast twitch glycolytic muscles may be a protection mechanism in living muscle against a very fast pH decrease. Chilling significantly decreased GDE activity and below 15 C porcine GDE was almost inactive. The effect of pH on GDE activity was only minor at the range normally found in post mortem muscles (pH 7.4 to 5.0). The GDE activity remained level for several hours after slaughter. During the first hours post mortem, GDE activity was similar in RN- carrier pigs and in wild type pigs. However, the GDE activity declined faster in M. longissimus dorsi from wild type pigs than in the RN carrier pigs, the difference between genotypes was significant after 24 h post mortem. Pro-glycogen and macro-glycogen contents were higher, pH decrease was faster and ultimate pH was lower in RN- carrier pigs than in wild type pigs. In the RN- carriers, the prolonged high GDE activity level may enable an extended pH decrease and lower ultimate pH in their muscles. In conclusion, GDE is not the main factor determining the rate or the extent of post mortem glycogenolysis, but under certain conditions, such as in very fast chilling, the inhibition of GDE activity in meat may reduce the rate of pH decrease and result in higher ultimate pH. The rate and extent of pH decrease affects several meat quality traits.
Resumo:
Soft tissue sarcomas (STS) are rare tumors of soft tissue occurring most frequently in the extremities. Modern treatment of extremity STS is based on limb-sparing surgery combined with radiotherapy. To prevent local recurrence, a healthy tissue margin of 2.5 cm around the resected tumor is required. This results in large defects of soft tissue and bone, necessitating the use of reconstructive surgery to achieve wound closure. When local or pedicled soft tissue flaps are unavailable, reconstruction with free flaps is used. Free flaps are elevated at a distant site, and have their blood flow restored at the recipient site through microvascular anastomosis. When limb-sparing surgery is made impossible, amputation is the only option. Proximal amputation such as forequarter amputation (FQA) causes considerable morbidity, but is nevertheless warranted for carefully selected patients for cure or palliation. 116 patients treated in 1985 - 2006 were included in the study. Of these, 93 patients treated with limb-sparing surgery and microvascular reconstructive surgery after resection of extremity STS. 25 patients who underwent FQA were also included. Patients were identified and their medical records retrospectively reviewed. In all, 105 free flap procedures were performed for 103 patients. A total of 95 curatively treated STS patients were included in survival analysis. The latissimus dorsi, used in 56% of cases, was the most frequently used free flap. Free flap success rate was 96%. There were 9% microvascular anastomosis complications and 15% wound complications. For curatively treated STS patients, local recurrence-free survival at 5 years was 73.1%, metastasis-free survival 58.3%, and overall disease-specific survival 68.9%. Functional results were good, with 75% of patients regaining normal or near-normal function after lower extremity, and 55% after upper extremity STS resection. Among curatively treated forequarter amputees, 5-year disease-free survival was 44%. In the palliatively treated group median time until disease death was 14 months. Microvascular reconstruction after extremity soft tissue sarcoma resection is safe and reliable, and produces well-healing wounds allowing early oncological treatment. Oncological outcome after these procedures is comparable to that of other extremity sarcoma patients. Functional results are generally good. Forequarter amputation is a useful treatment option for soft tissue tumors of the shoulder girdle and proximal upper extremity. When free flap coverage of extended forequarter amputation is required, the preferable flap is a fillet flap from the amputated extremity. Acceptable oncological outcome is achieved for curatively treated FQA patients. In the palliatively treated patient considerable periods of increased quality of life can be achieved.
Resumo:
The present work proposes a new sensing methodology, which uses Fiber Bragg Gratings (FBGs) to measure in vivo the surface strain and strain rate on calf muscles while performing certain exercises. Two simple exercises, namely ankle dorsi-flexion and ankle plantar-flexion, have been considered and the strain induced on the medial head of the gastrocnemius muscle while performing these exercises has been monitored. The real time strain generated has been recorded and the results are compared with those obtained using a commercial Color Doppler Ultrasound (CDU) system. It is found that the proposed sensing methodology is promising for surface strain measurements in biomechanical applications.
Resumo:
p.135-139
Resumo:
p.77-85
Resumo:
p.19-25
Resumo:
This paper describes an example of spontaneous transitions between qualitatively different coordination patterns during a cyclic lifting and lowering task. Eleven participants performed 12 trials of repetitive lifting and lowering in a ramp protocol in which the height of the lower shelf was raised or lowered I cm per cycle between 10 and 50 cm. Two distinct patterns of coordination were evident: a squat technique in which moderate range of hip, knee and ankle movement was utilised and ankle plantar-flexion occurred simultaneously with knee and hip extension; and a stoop technique in which the range of knee movement was reduced and knee and hip extension was accompanied by simultaneous ankle dorsi-flexion. Abrupt transitions from stoop to squat techniques were observed during descending trials, and from squat to stoop during ascending trials. Indications of hysteresis was observed in that transitions were more frequently observed during descending trials, and the average shelf height at the transition was 5 cm higher during ascending trials. The transitions may be a consequence of a trade-off between the biomechanical advantages of each technique and the influence of the lift height on this trade-off. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Administration of Na(+)/H(+) exchange isoform-1 (NHE-1) inhibitors before ischemia has been shown to attenuate myocardial infarction in several animal models of ischemia-reperfusion injury. However, controversy still exists as to the efficacy of NHE-1 inhibitors in protection of myocardial infarction when administered at the onset of reperfusion. Furthermore, the efficacy of NHE-1 inhibition in protection of skeletal muscle from infarction (necrosis) has not been studied. This information has potential clinical applications in prevention or salvage of skeletal muscle from ischemia-reperfusion injury in elective and trauma reconstructive surgery. The objective of this research project is to test our hypothesis that the NHE-1 inhibitor cariporide is effective in protection of skeletal muscle from infarction when administered at the onset of sustained ischemia or reperfusion and to study the mechanism of action of cariporide. In our studies, we observed that intravenous administration of cariporide 10 min before ischemia (1 or 3 mg/kg) or reperfusion (3 mg/kg) significantly reduced infarction in pig latissimus dorsi muscle flaps compared with the control, when these muscle flaps were subjected to 4 h of ischemia and 48 h of reperfusion (P <0.05; n = 5 pigs/group). Both preischemic and postischemic cariporide treatment (3 mg/kg) induced a significant decrease in muscle myeloperoxidase activity and mitochondrial-free Ca(2+) content and a significant increase in muscle ATP content within 2 h of reperfusion (P <0.05; n = 4 pigs/group). Preischemic and postischemic cariporide treatment (3 mg/kg) also significantly inhibited muscle NHE-1 protein expression within 2 h of reperfusion after 4 h of ischemia, compared with the control (P <0.05; n = 3 pigs/group). These observations support our hypothesis that cariporide attenuates skeletal muscle infarction when administered at the onset of ischemia or reperfusion, and the mechanism involves attenuation of neutrophil accumulation and mitochondrial-free Ca(2+) overload and preservation of ATP synthesis in the early stage of reperfusion.
Resumo:
We tested our hypothesis that postischemic conditioning (PostC) is effective in salvage of ischemic skeletal muscle from reperfusion injury and the mechanism involves inhibition of opening of the mitochondrial permeability transition pore (mPTP). In bilateral 8x13 cm pig latissimus dorsi muscle flaps subjected to 4 h ischemia, muscle infarction increased from 22+/-4 to 41+/-1% between 2 and 24 h reperfusion and remained unchanged at 48 (38+/-6%) and 72 (40+/-1%) h reperfusion (P
Resumo:
We have previously demonstrated that remote ischemic preconditioning (IPC) by instigation of three cycles of 10-min occlusion/reperfusion in a hindlimb of the pig elicits an early phase of infarct protection in local and distant skeletal muscles subjected to 4 h of ischemia immediately after remote IPC. The aim of this project was to test our hypothesis that hindlimb remote IPC also induces a late phase of infarct protection in skeletal muscle and that K(ATP) channels play a pivotal role in the trigger and mediator mechanisms. We observed that pig bilateral latissimus dorsi (LD) muscle flaps sustained 46 +/- 2% infarction when subjected to 4 h of ischemia/48 h of reperfusion. The late phase of infarct protection appeared at 24 h and lasted up to 72 h after hindlimb remote IPC. The LD muscle infarction was reduced to 28 +/- 3, 26 +/- 1, 23 +/- 2, 24 +/- 2 and 24 +/- 4% at 24, 28, 36, 48 and 72 h after remote IPC, respectively (P <0.05; n = 8). In subsequent studies, hindlimb remote IPC or intravenous injection of the sarcolemmal K(ATP) (sK(ATP)) channel opener P-1075 (2 microg/kg) at 24 h before 4 h of sustained ischemia (i.e., late preconditioning) reduced muscle infarction from 43 +/- 4% (ischemic control) to 24 +/- 2 and 19 +/- 3%, respectively (P <0.05, n = 8). Intravenous injection of the sK(ATP) channel inhibitor HMR 1098 (6 mg/kg) or the nonspecific K(ATP) channel inhibitor glibenclamide (Glib; 1 mg/kg) at 10 min before remote IPC completely blocked the infarct- protective effect of remote IPC in LD muscle flaps subjected to 4 h of sustained ischemia at 24 h after remote IPC. Intravenous bolus injection of the mitochondrial K(ATP) (mK(ATP)) channel inhibitor 5-hydroxydecanoate (5-HD; 5 mg/kg) immediately before remote IPC and 30-min intravenous infusion of 5-HD (5 mg/kg) during remote IPC did not affect the infarct-protective effect of remote IPC in LD muscle flaps. However, intravenous Glib or 5-HD, but not HMR 1098, given 24 h after remote IPC completely blocked the late infarct-protective effect of remote IPC in LD muscle flaps. None of these drug treatments affected the infarct size of control LD muscle flaps. The late phase of infarct protection was associated with a higher (P <0.05) muscle content of ATP at the end of 4 h of ischemia and 1.5 h of reperfusion and a lower (P <0.05) neutrophilic activity at the end of 1.5 h of reperfusion compared with the time-matched control. In conclusion, these findings support our hypothesis that hindlimb remote IPC induces an uninterrupted long (48 h) late phase of infarct protection, and sK(ATP) and mK(ATP) channels play a central role in the trigger and mediator mechanism, respectively.
Resumo:
Background: Immediate breast reconstruction after mastectomy has increased over the past decade following the unequivocal demonstration of its oncological safety and the availability of reliable methods of reconstruction. Broadly, it is undertaken in the treatment of breast cancer, after prophylactic mastectomy in high-risk patients, and in the management of treatment failure after breast-conserving surgery and radiotherapy. Immediate breast reconstruction can be achieved reliably with a variety of autogenous tissue techniques or prosthetic devices. Careful discussion and evaluation remain vital in choosing the correct technique for the individual patient.
Methods: This review is based primarily on an English language Medline search with secondary references obtained from key articles.
Results and conclusion: Immediate breast reconstruction is a safe and acceptable procedure after mastectomy for cancer; there is no evidence that it has untoward oncological consequences. In the appropriate patient it can be achieved effectively with either prosthetic or autogenous tissue reconstruction. Patient selection is important in order to optimize results, minimize complications and improve quality of life, while simultaneously treating the malignancy. Close cooperation and collaboration between the oncological breast and reconstructive achieve these objectives.
Resumo:
BACKGROUND: Breast reconstruction aims to improve health-related quality of life after mastectomy. However, evidence guiding patients and surgeons in shared decision-making concerning the optimal type or timing of surgery is lacking.
METHODS: QUEST comprised two parallel feasibility phase III randomized multicentre trials to assess the impact of the type and timing of latissimus dorsi breast reconstruction on health-related quality of life when postmastectomy radiotherapy is unlikely (QUEST A) or highly probable (QUEST B). The primary endpoint for the feasibility phase was the proportion of women who accepted randomization, and it would be considered feasible if patient acceptability rates exceeded 25 per cent of women approached. A companion QUEST Perspectives Study (QPS) of patients (both accepting and declining trial participation) and healthcare professionals assessed trial acceptability.
RESULTS: The QUEST trials opened in 15 UK centres. After 18 months of recruitment, 17 patients were randomized to QUEST A and eight to QUEST B, with overall acceptance rates of 19 per cent (17 of 88) and 22 per cent (8 of 36) respectively. The QPS recruited 56 patients and 51 healthcare professionals. Patient preference was the predominant reason for declining trial entry, given by 47 (53 per cent) of the 88 patients approached for QUEST A and 22 (61 per cent) of the 36 approached for QUEST B. Both trials closed to recruitment in December 2012, acknowledging the challenges of achieving satisfactory patient accrual.
CONCLUSION: Despite extensive efforts to overcome recruitment barriers, it was not feasible to reach timely recruitment targets within a feasibility study. Patient preferences for breast reconstruction types and timings were common, rendering patients unwilling to enter the trial.
Resumo:
Dissertação de Mestrado, Engenharia Zootécnica, 13 de Junho de 2014, Universidade dos Açores.