953 resultados para Linear Codes over Finite Fields


Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Vegeu el resum a l'inici del document del fitxer adjunt."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper derives approximations allowing the estimation of outage probability for standard irregular LDPC codes and full-diversity Root-LDPC codes used over nonergodic block-fading channels. Two separate approaches are discussed: a numerical approximation, obtained by curve fitting, for both code ensembles, and an analytical approximation for Root-LDPC codes, obtained under the assumption that the slope of the iterative threshold curve of a given code ensemble matches the slope of the outage capacity curve in the high-SNR regime.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents our investigation on iterativedecoding performances of some sparse-graph codes on block-fading Rayleigh channels. The considered code ensembles are standard LDPC codes and Root-LDPC codes, first proposed in and shown to be able to attain the full transmission diversity. We study the iterative threshold performance of those codes as a function of fading gains of the transmission channel and propose a numerical approximation of the iterative threshold versus fading gains, both both LDPC and Root-LDPC codes.Also, we show analytically that, in the case of 2 fading blocks,the iterative threshold root of Root-LDPC codes is proportional to (α1 α2)1, where α1 and α2 are corresponding fading gains.From this result, the full diversity property of Root-LDPC codes immediately follows.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays problem of solving sparse linear systems over the field GF(2) remain as a challenge. The popular approach is to improve existing methods such as the block Lanczos method (the Montgomery method) and the Wiedemann-Coppersmith method. Both these methods are considered in the thesis in details: there are their modifications and computational estimation for each process. It demonstrates the most complicated parts of these methods and gives the idea how to improve computations in software point of view. The research provides the implementation of accelerated binary matrix operations computer library which helps to make the progress steps in the Montgomery and in the Wiedemann-Coppersmith methods faster.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Little has so far been reported on the robustness of non-orthogonal space-time block codes (NO-STBCs) over highly correlated channels (HCC). Some of the existing NO-STBCs are indeed weak in robustness against HCC. With a view to overcoming such a limitation, a generalisation of the existing robust NO-STBCs based on a 'matrix Alamouti (MA)' structure is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We construct indecomposable and noncrossed product division algebras over function fields of connected smooth curves X over Z(p). This is done by defining an index preserving morphism s: Br(<(K(X))over cap>)` --> Br(K(X))` which splits res : Br(K (X)) --> Br(<(K(X))over cap>), where <(K(X))over cap> is the completion of K (X) at the special fiber, and using it to lift indecomposable and noncrossed product division algebras over <(K(X))over cap>. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Z(4)-linearity is a construction technique of good binary codes. Motivated by this property, we address the problem of extending the Z(4)-linearity to Z(q)n-linearity. In this direction, we consider the n-dimensional Lee space of order q, that is, (Z(q)(n), d(L)), as one of the most interesting spaces for coding applications. We establish the symmetry group of Z(q)(n) for any n and q by determining its isometries. We also show that there is no cyclic subgroup of order q(n) in Gamma(Z(q)(n)) acting transitively in Z(q)(n). Therefore, there exists no Z(q)n-linear code with respect to the cyclic subgroup.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we establish the connections between two different extensions of Z(4)-linearity for binary Hamming spaces, We present both notions - propelinearity and G-linearity - in the context of isometries and group actions, taking the viewpoint of geometrically uniform codes extended to discrete spaces. We show a double inclusion relation: binary G-linear codes are propelinear codes, and translation-invariant propelinear codes are G-linear codes. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Let epsilon be a commutative ring with identity and P is an element of epsilon[x] be a polynomial. In the present paper we consider digit representations in the residue class ring epsilon[x]/(P). In particular, we are interested in the question whether each A is an element of epsilon[x]/(P) can be represented modulo P in the form e(0)+ e(1)x + ... + e(h)x(h), where the e(i) is an element of epsilon[x]/(P) are taken from a fixed finite set of digits. This general concept generalizes both canonical number systems and digit systems over finite fields. Due to the fact that we do not assume that 0 is an element of the digit set and that P need not be monic, several new phenomena occur in this context.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Goppa code is described in terms of a polynomial, known as Goppa polynomial, and in contrast to cyclic codes, where it is difficult to estimate the minimum Hamming distance d from the generator polynomial. Furthermore, a Goppa code has the property that d ≥ deg(h(X))+1, where h(X) is a Goppa polynomial. In this paper, we present a decoding principle for Goppa codes constructed by generalized polynomials, which is based on modified Berlekamp-Massey algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Typical performance of low-density parity-check (LDPC) codes over a general binary-input output-symmetric memoryless channel is investigated using methods of statistical mechanics. The binary-input additive-white-Gaussian-noise channel and the binary-input Laplace channel are considered as specific channel noise models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using methods of statistical physics, we study the average number and kernel size of general sparse random matrices over GF(q), with a given connectivity profile, in the thermodynamical limit of large matrices. We introduce a mapping of GF(q) matrices onto spin systems using the representation of the cyclic group of order q as the q-th complex roots of unity. This representation facilitates the derivation of the average kernel size of random matrices using the replica approach, under the replica symmetric ansatz, resulting in saddle point equations for general connectivity distributions. Numerical solutions are then obtained for particular cases by population dynamics. Similar techniques also allow us to obtain an expression for the exact and average number of random matrices for any general connectivity profile. We present numerical results for particular distributions.