112 resultados para Leonora


Relevância:

10.00% 10.00%

Publicador:

Resumo:

La intención de la ponencia está en la dirección de presentar un estudio de las prácticas que ejercen los actores en un diseño de aprendizaje puesto en escena en el aula de matemáticas. El diseño referido se centra, no en los contenidos matemáticos en sí o en las producciones de los participantes, sino en las prácticas sociales ejercidas por los participantes utilizando herramientas y situadas en un contexto social; en este caso las prácticas sociales de modelación del enfriamiento de un líquido. Reportamos la narración de la puesta en escena en el aula de matemáticas de un diseño de aprendizaje basado en prácticas sociales de modelación de fenómenos: “Lo exponencial: la ley de enfriamiento de Newton”. Aquí narramos como los participantes construyen lo exponencial como herramienta al intentar comprender y predecir lo que sucede al enfriarse un líquido.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Analizamos los registros de representación semiótica y las correspondientes funciones semióticas implícitos en la solución de dos problemas propuestos para la Educación Polimodal, que consideramos pueden ser utilizados en el proceso de enseñanza-aprendizaje de la noción resolución numérica de ecuaciones polinómicas, contemplada en los C.B.C. del mencionado nivel. Las representaciones juegan un rol fundamental en los procesos de construcción de conceptos, por lo que son importantes en la enseñanza, aprendizaje y comunicación del conocimiento matemático (Hitt, 1996). Con este análisis a priori, pretendemos ver cuáles de los registros de representación son de mayor peso para incorporar o darle sentido al concepto: Funciones polinómicas. Raíces de las correspondientes ecuaciones. Tratamos de responder a las preguntas: ¿Cuáles son los distintos registros de representación puestos en juego en la solución de cada problema?. ¿Cómo se suceden?. ¿Cómo aparecen y cuál es la necesidad de su conversión?. ¿Cómo se coordinan en la actividad conceptual? ¿En qué medida la presentación del tema desde una situación problemática es beneficiosa para incorporar y dar sentido a la determinación de las raíces de una ecuación polinómica?.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El propósito de esta investigación en curso es indagar sobre las representaciones que tienen estudiantes del nivel medio superior (secundaria y primer nivel universitario) acerca de nociones matemáticas variacionales, prestando especial atención a su forma de aprenderlas y buscando propiciar espacios de reflexión respecto de ellas, con el objeto de aportar información que sirva de base para la elaboración de diseños didácticos tendientes a mediar -en procesos de profundidad creciente- aprendizajes de nociones matemáticas variacionales, por ejemplo, la razón de cambio de una magnitud. Como técnica exploratoria consideramos el uso de bitácoras personales de reflexión de los estudiantes, para luego, en una segunda etapa, derivar en la construcción y aplicación de un cuestionario y la realización de entrevistas para triangular fuentes de información. En este artículo se reportan evidencias de la primera etapa, provenientes de las bitácoras personales, en el contexto de un curso de cálculo inicial.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Los obstáculos para operar con la visualización por parte de los estudiantes, a la hora de estudiar lo que varía, muestran la importancia de promover el desarrollo de una “inteligencia visual”. En especial la construcción de gráficas, dado que es una importante herramienta que permite a los estudiantes realizar una actividad matemática escolar y por tanto desarrollar un pensamiento matemático. Herramienta didáctica que ha ido, desde el surgimiento de la tecnología digital, cobrando mayor importancia en la investigación tanto matemática como en didáctica de las matemáticas. A modo de ilustración en el comportamiento tendencial (Cordero, 2001) de las funciones, un estudiante aprende a “identificar” coeficientes en la función, a “reconocer” patrones de comportamientos gráficos, a “buscar” tendencias en los comportamientos y a "relacionar” funciones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El presente trabajo se inscribe dentro de la línea de investigación denominada Pensamiento y Lenguaje Variacional, trazada por el Dr. Cantoral. Esta línea de investigación estudia la articulación entre la investigación y las prácticas sociales que dan vida a la matemática de la variación y el cambio. El contexto general en el que se ubica el presente trabajo es el programa de investigación desarrollado por el Dr. Crisólogo Dolores cuyo objetivo principal se centra en el estudio de los procesos de desarrollo del pensamiento y lenguaje variacional en condiciones escolares (Dolores, 1996). En particular nuestro interés se enfoca en el estudio de la estabilidad y cambio de las concepciones alternativas relativas al análisis del comportamiento de funciones a través de sus gráficas, pues existen evidencias de que esas interpretaciones primarias se arraigan en la mente de los estudiantes e interfieren en el desarrollo del pensamiento variacional. De hecho, asumimos que parte importante del desarrollo de esta forma de pensamiento consiste en el dominio de los procesos de franqueo o superación de esas concepciones alternativas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interesa a este estudio detectar modos de razonamiento matemático propiciados en los alumnos desde las prácticas docentes de los profesores. Se pretende hacer un estudio de casos en donde se identifiquen estos razonamientos. Algunas de las preguntas guía de este estudio son: ¿Qué relación hay entre los propósitos de la asignatura con el perfil de egreso de la educación media superior? ¿De que manera influye la formación del profesor en su práctica docente y que modos de razonamiento desarrolla dentro de esta? ¿Qué es lo que busca el profesor en la bibliografía y qué fuentes consulta y dónde las consulta? ¿Cuál es la dinámica ambiental dentro del aula? ¿qué tipo de actitudes se generan en el aula? ¿se favorecen sujetos críticos y reflexivos, con la posibilidad de expresarse y de preguntarse? ¿Qué tipo de actitudes muestran los alumnos? bajo la perspectiva de los modos de pensamiento analizados por Sierpinska, quien maneja los modos geométrico–sintético, analíticoaritmético y analítico-estructural. Frente a los altos índices de reprobación de los alumnos de Bachillerato General en la asignatura de Álgebra, surge el desafío para los docentes de reemplazar la memorización por una comprensión más profunda. Lo que se pretende es que las matemáticas sean, para el estudiante, herramientas funcionales y flexibles que le permitan resolver las situaciones problemáticas que se le planteen, en diversos ámbitos. A la perspectiva técnica se opone la perspectiva práctica, a los dos puntos de vistas mencionados se agrega un nuevo enfoque: estratégico, donde las actividades educativas están históricamente localizadas, las cuales tienen un lugar, sobre un trasfondo socio histórico y proyectan una visión de la clase de futuro que deseamos construir.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Este trabajo es parte de un proyecto de investigación sobre la aplicación de tecnología computacional en la enseñanza y aprendizaje de matemáticas con alumnos de nivel medio básico o secundaria (séptimo a noveno grado) y nivel medio superior o bachillerato (décimo a doceavo grado), en particular, trata de entender la función mediadora del efecto de “arrastre” del software de geometría dinámica en la cognición de sujetos que estudian las nociones de variación y variable. Aquí reportamos los resultados de una exploración, usando Cabri, en el aprendizaje de esas nociones con estudiantes de nivel medio básico de 13-14 años de edad. Se describen las actividades, las respuestas de los estudiantes y una experiencia que sugiere el potencial de la verbalización de los resultados por los estudiantes en el proceso de simbolización algebraica.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sobre la base de investigaciones que realizamos previamente acerca de los errores frecuentes de nuestros alumnos en las cuestiones de Álgebra básica, que les impiden incorporar adecuadamente conceptos del Análisis Matemático, en la cátedra de esta asignatura de la Facultad de Ciencias Económicas nos propusimos realizar diversas acciones que tiendan a modificar esa situación, con el propósito de promover que el alumno emprenda un aprendizaje eficaz del Cálculo. Entre otras acciones planificamos un conjunto de clases previas al desarrollo de la asignatura en las que, sobre la base de materiales escritos de guía para el aprendizaje y con la incorporación del uso de la herramienta computacional, el alumno tendrá oportunidad de efectuar actividades de introducción-motivación sobre conocimientos previos, con respecto a las falencias más frecuentes que se han detectado, la cantidad y calidad de los errores que, en general, cometen con el uso de la matemática básica. Otras actividades son de consolidación y/o de refuerzo, de recuperación y/o ampliación a medida que se evalúa el avance del alumno. El uso de la herramienta computacional, en este caso, el Programa Matemático-Informático DERIVE, tiene por objeto proporcionar al alumno un primer contacto con el mismo y aprovecharlo como recurso pedagógico en el aula, motivante y colaborador en las realización de las actividades propuestas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Esta es una propuesta didáctica que consta de una serie de actividades relacionadas con la representación gráfica de ciertas funciones y su vinculación con una representación en un contexto físico o icónico (dibujo de un recipiente). Las actividades son de dos tipos: Dadas las formas de los recipientes, bosquejar las gráficas correspondientes, teniendo en cuenta que la variable independiente es la altura del líquido y la variable dependiente es el área de la superficie del líquido (o bien el volumen del líquido dentro del recipiente); dadas las gráficas del área de la superficie del líquido versus altura, bosquejar los posibles recipientes correspondientes. Ambas actividades son diseñadas para propiciar el cambio de un sistema de representación a otro (Janvier, 1987; Duval, 1992, 1999; Hitt, 1992).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Se reporta una investigación realizada con alumnos de 15- 16 años sobre los algoritmos de construcción de un Arco Capaz de segmento y ángulo dado. Se propuso a los alumnos un problema cuya solución óptima es un Arco Capaz de segmento y ángulo dado, y se les requirió luego que construyeran dicho arco utilizando regla, compás y semicírculo. Los alumnos idearon diversas construcciones para el Arco Capaz pero en ningún momento aparece la construcción tradicional de Euclides. Básicamente, la idea que usan los estudiantes para construir el Arco Capaz, es la de obtener un triángulo cualquiera tal que uno de sus ángulos sea el ángulo dado para luego determinar su circuncentro y trazar el Arco.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Se pretende crear un marco de resolución de problemas que sea motivador para los alumnos del último año de Bachillerato o del primer año de estudios en la Universidad, y para ello se presentan cuatro problemas reales, cuya solución requiere establecer el concepto de integral definida, y uno histórico, que fue propuesto y resuelto por Arquímedes. Asimismo, en el desarrollo del curso se verá la importancia del uso de herramientas didácticas, tales como el generador de volúmenes de revolución, que se construirá en el propio curso, y el ordenador, cuyo uso será absolutamente necesario para resolver los problemas planteados. En suma, además de promover adaptaciones curriculares adecuadas, se fijan estos tres objetivos fundamentales: Cómo se crea un marco de resolución de problemas y cómo se integran herramientas didácticas apropiadas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Al introducir las nuevas tecnologías a los escenarios escolares se provocan reacciones (Chevallard, 1992) debido a que altera la armonía del Sistema Didáctico (el cual está compuesto por tres componentes; estudiantes, profesor y el saber). La relación entre los componentes del sistema didáctico se modifican debido a que existe un instrumento mediador que participa transformando las prácticas. Este proceso de integración requiere establecer las condiciones de equilibrio del Sistema Didáctico, al replantear el dominio del conocimiento, al caracterizar la interacción entre los estudiantes y el profesor, al ubicar el papel de la tecnología en el currículo, Laborde, (2001) y desde la perspectiva socioepistemológica, (Cantoral, 2004; Castañeda, 2004) explicar cómo se modifican las prácticas y cómo se construyen nuevos escenarios para el estudio de las matemáticas. Este trabajo de investigación propone describir las prácticas asociadas al estudio de la derivada en un ambiente tecnológico en las que se ponen en juego diversas situaciones interrelacionadas utilizando objetos java. Estos objetos, cuyo escenario natural de aplicación es en la red de Internet, se caracterizan por la disponibilidad de manipulación.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El curso funciones matemáticas en la enseñanza secundaria es la primera experiencia de capacitación masiva de docentes a nivel nacional en la modalidad a distancia, usando las tecnologías de la información y comunicación (TICs), con cobertura nacional e impulsada por el Ministerio de Educación de Chile. La formación se centra en una área específica del currículo como lo es la matemática en el nivel secundario y en un contenido curricular concreto las funciones. El conocimiento de la reforma curricular, la generación de material didáctico, la incorporación de las TICs en las prácticas pedagógicas y la evaluación de los aprendizajes, han sido los contenidos sobre los cuales se ha diseñado y estructurado el curso. La metodología de trabajo situó al docente en el centro del aprendizaje, como una aprendiz que define en forma autónoma su camino de aprendizaje de acuerdo a sus intereses y motivaciones. Los resultados muestran una deserción inicial importante, pero luego un alto compromiso y permanencia en el curso, valoración de los contenidos, los recursos propuestos, las estrategias de enseñanza y, la metodología de trabajo implementada.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La sociedad actual demanda a su sistema educativo una formación estadística que capacite a sus ciudadanos para entender, comprender y resolver, la diversidad de información y problemas surgidos desde diversos ámbitos e interpretarlos en los contextos culturales que se presenten. En consecuencia, las curriculas educativas han incrementado sus contenidos estadísticos, desde la enseñanza primaria, hasta la universitaria, destacando la necesidad de la enseñanza de la estadística como una valiosa herramienta de la metodología científica. Un buen ejemplo lo constituye la estructura curricular del Sistema Educativo Argentino que a partir de 1995 establece la escolaridad obligatoria en 10 años, incluyendo la estadística desde los primeros cursos del nivel inicial. La formación básica en estadística ha sido encomendada, en los niveles no universitarios, a los profesores de matemáticas que generalmente no han recibido capacitación específica en el área. Para los profesores que se encuentran en esta situación, la enseñanza de la estadística supone un problema debido a que se requieren conocimientos, destrezas y experiencias en el tratamiento y elaboración de información que demanda: la selección de técnicas e instrumentos que mejor se adapten a los datos, la flexibilización para cambiar procedimientos, la interpretación adecuada de los resultados y la capacidad para evaluar la validez y fiabilidad de las conclusiones extraídas. Ser capaz de dominar esta actividad o enseñarla a un grupo de estudiantes no es una tarea simple, necesita de preparación previa y cierta experiencia. Holmes (2002) indica que, puesto que las lecciones de estadística, dentro de los libros de matemática han sido generalmente escritas por matemáticos, el objetivo preferente de las mismas es la actividad matemática y no la actividad estadística. Esta puede ser la razón por la cual prevalece la idea de que la estadística que se enseña en las escuelas o niveles básicos universitarios no refleja suficientemente la naturaleza eminentemente práctica de esta disciplina.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diversos estudios sobre tecnologías educativas para la docencia superior, formulan la participación activa y aprendizajes significativos, complementado con trabajo interactivo y autoestima positiva. Investigadores en educación afirman que “Construimos significados cuando relacionamos las nuevas informaciones con nuestros esquemas previos de comprensión de la realidad”. Por tanto, se propone incluir los contenidos dentro de situaciones naturales que impliquen el enfrentamiento del alumno con tareas que se asemejen a las complejas situaciones de la vida real y profesional. Esto apoyado con tecnología, donde el objetivo sea desarrollar actividades que permitan al alumno descubrir relaciones, propiedades, y donde desarrolle la capacidad de análisis, creatividad y una actitud crítica hacia los resultados.